Cholinergic and metabolic consequences of streptozotocin-induced brain injury

  • Alzheimer’s disease (AD) is the major cause of dementia. It is characterized by the accumulation of abnormal proteins (amyloid-β plaque and neurofibrillary tangles) leading to loss of synapses, dendrites, neurons, memory and cognition. Sporadic late-onset AD is the major type of AD characterized by unclear etiology and a lack of disease-modifying therapy. To understand this disease, an alternative AD hypothesis has been proposed: AD may resemble diabetes in the brain or “diabetes type 3”. This hypothesis is supported by the fact that (1) brain glucose hypometabolism precedes AD clinical symptoms and (2) diabetes increases the risk of AD. To test this hypothesis, wild-type rats receiving intracerebroventricular administration of streptozotocin (icv-STZ) were used as a model. Streptozotocin (STZ) is a glucosamine-nitrosourea compound commonly used to induce experimental diabetes by peripheral administration. A similar pathological mechanism to peripheral STZ is then proposed to explain icv-STZ toxicity: insulin receptor signaling impairment results in glucose hypometabolism leading to cognitive deficits. Objective: Icv-STZ model seems promising as a toxin-induced, non-transgenic AD model with the possibility to connect AD and diabetes mellitus (DM), one of the risk factors for AD. However, the mechanisms of how icv-STZ induced AD-like symptoms are unclear. Therefore, using microdialysis as the main technique, we tested 2 AD hypotheses in this model: (1) the glucose hypometabolism as an alternative AD hypothesis and (2) the cholinergic deficit as an important characteristic of AD pathology. Hippocampus was chosen because cholinergic function in this region is severely affected in AD. In comparison, the striatum was chosen because it contains cholinergic interneurons and is less affected in AD. Methods: In this study, we used male Wistar rats of 190-220 g body weight (5 weeks of age). The rats were injected intracerebrally with STZ at a dose of 3 mg/kg (2x1.5 mg/kg; „high dose“) and 0.6 mg/kg („low dose“) with saline as control. After 21 days, samples were collected to investigate cholinergic and metabolic changes using histology, biochemistry, and neurochemistry. Brain injury was confirmed using GFAP staining and Fluoro jade staining in the hippocampus. Mitochondrial toxicity was investigated by measurement of mitochondrial respiratory function in both hippocampus and striatum. Cholinergic markers such as acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) activity, and choline transporter (CHT-1) activity, commonly known as high-affinity choline uptake (HACU), were measured in both hippocampus and striatum using a spectrophotometer and a scintillator. Microdialysis is the main technique in our study. It was done in awake animals under behavioral or pharmacological stimulation. We used a self-built probe with a semi-permeable membrane (pore size of 30 kDa) that was implanted in either hippocampus or striatum. The probes were then perfused with artificial cerebrospinal fluid (aCSF) supplemented with 0.1 μM neostigmine for extracellular acetylcholine level measurement. During the perfusion, small hydrophilic compounds from brain extracellular space diffuse into the dialysates. Dialysates of 15 minutes intervals were collected for 90 minutes and used for analysis. After collection of dialysates for the first 90 minutes (basal data), rats were moved to an open field box (35x32x20 cm) for behavioral stimulation. After collection of the second 90 minute dialysates, the rats were transferred back to the microdialysis cage and dialysates were collected for another 90 minutes. On day 2, after collection of dialysates under basal conditions, 1 μM scopolamine was added to the perfusion solution for stimulation of acetylcholine release. The dialysates were also collected for 90 min followed by another 90 min of dialysis without scopolamine. The microdialysate samples were then analyzed as follows. ACh level was measured by HPLC-ECD. Glucose metabolites (glucose, lactate, pyruvate) were measured by a CMA-600 microanalyzer. An alternative energy metabolite (beta-hydroxybutyrate/BHB) was measured by GC-MS. Choline and glycerol as membrane breakdown markers were also measured by HPLC-ECD and CMA-600 microanalyzer, respectively. Markers of oxidative stress (isoprostanes) were measured using a commercially available ELISA kit. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Tri YulianiGND
Place of publication:Frankfurt am Main
Referee:Jochen KleinORCiDGND, Achim SchmidtkoORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2020/12/16
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/12/15
Release Date:2020/12/17
Page Number:125
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht