Analytical screening for possibly toxic plant secondary metabolites in surface waters by liquid chromatography coupled to high resolution mass spectrometry

  • A large number of chemicals are constantly introduced to surface water from anthropogenic and natural sources. Although substantial efforts have been made to identify these chemicals (e.g potentially anthropogenic contaminants) in surface waters using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS), a large number of LC-HRMS chemical signals often with high peak intensity are left unidentified. In addition to synthetic chemicals and transformation products, these signals may also represent plant secondary metabolites (PSMs) released from vegetation through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation. While this may be considered as a confounding factor in screening of water contaminants, it could also contribute to the cumulative toxic risk of water contamination. However, it is hardly known to what extent these metabolites contribute to the chemical mixture of surface waters. Thus, reducing the number of unknowns in water samples by identifying also PSMs in significant concentrations in surface waters will help to improve monitoring and assessment of water quality potentially impacted by complex mixtures of natural and synthetic compounds. Therefore, the main focus of the present study was to identify the occurrence of PSMs in river waters and explore the link between the presence of vegetation along rivers and detection of their corresponding PSMs in river water. In order to achieve the goals of the present thesis, two chemical screening approaches, namely, non-target and target screening using LC-HRMS were implemented. (1) Non-target analysis involving a novel approach has been applied to associate unknown peaks of high intensity in LC-HRMS to PSMs from surrounding vegetation by focusing on peaks overlapping between river water and aqueous plant extracts (Annex A1). (2) LC–HRMS target screening in river waters were performed for about 160 PSMs, which were selected from a large phytotoxin database (Annex A2 and A3) considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. In non-target screening (Annex A1), a high number of overlapping peaks has been found in between aqueous plant extracts and water from adjacent location, suggesting a significant impact of vegetation on chemical mixtures detectable in river waters. The chemical structures were assigned for 12 pairs of peaks while several pairs of peaks whose MS/MS spectra matched but no structure suggestion were made by the implemented software tools for retrieving possible chemical structure. Nevertheless, the pairs of peaks with matching spectra represented the same chemical structure. The identified compound belonged to different compound classes such as coumarins, flavonoids besides others. For the identified PSMs individual concentration up to 5 µg/L were measured. The concentration and the number of detected PSMs per sample were correlated with the rain event and vegetation coverage. Target screening unraveled the occurrence of 33 out of 160 target compounds in river waters (Annex A2 and A3). The identified compounds belonged to different classes such as alkaloids, coumarins, flavonoids, and other compounds. Individual compound concentrations were up to several thousand ng/L with the toxic alkaloids narciclasine and lycorine recording highest maximum concentrations. The neurotoxic alkaloid coniine from poison hemlock was detected at concentrations up to 0.4 µg/L while simple coumarins esculetin and fraxidin occurred at concentrations above 1 µg/L. The occurrence of some PSMs in river water were correlated to the specific vegetation growing along the rivers while the others were linked to a wide range of vegetation. As an example, narciclasine and lycorine was emitted by the dominant plant species from Amaryllidaceae family (e.g. Galanthus nivalis (snow drop), Leucojum vernum and Anemone nemorosa) while intermedine and echimidine were from Symphytum officinale. The ubiquitous occurrence of simple coumarins fraxidin, scopoletin and aesculetin could be linked to their presence in a wide range of vegetation. Due to lack of aquatic toxicity data for the identified PSMs (in both target and non-target) and extremely scarce exposure data, no reliable risk assessment was possible. Alternatively, risk estimation was performed using the threshold for toxicological concern (TTC) concept developed for drinking water contaminants. Many of the identified PSMs exceeded the TTC value (0.1 µg/L) thus caution should be taken when using such surface waters for drinking water abstraction or recreational use. This thesis provides an overview of the occurrence of PSMs in river water impacted by the massive presence of vegetation. Concentration for many of the identified PSMs are well within the range of those of synthetic environmental contaminants. Thus, this study adds to a series of recent results suggesting that possibly toxic PSMs occur in relevant concentrations in European surface waters and should be considered in monitoring and risk assessment of water resources. Aquatic toxicity data for PSMs are extensively lacking but are required to include these compounds in the assessment of risks to aquatic organisms and for eliminating risks to human health during drinking water production.

Download full text files

Export metadata

Metadaten
Author:Mulatu Yohannes Nanusha
URN:urn:nbn:de:hebis:30:3-610183
DOI:https://doi.org/10.21248/gups.61018
Referee:Werner BrackORCiDGND, Henner HollertORCiDGND
Advisor:Werner Brack, Martin Krauss, Henner Hollert
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/05/20
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/10/05
Release Date:2021/08/17
Page Number:174
HeBIS-PPN:484234412
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht