Quadrupole electrical resistivity tomography
- In this thesis the Quadrupole Electrical Resistivity Tomography (QERT) method is presented as a new measurement concept for profile-based geoelectric field measurements. The concept is based on a tensorial formulation of the apparent resistivity in order to make three-dimensional statements about the underground conductivity structure. For a simple application of the method a number of similarities to the classical dipole-dipole method were made, such as the presentation of the measurement data in a pseudo-section. The added value of the method compared to the classical profile-based methods is especially the differentiation of lateral structures. Anomalies, which are located laterally to the profile, can be detected with respect to their position (left-right) as well as their conductivity contrast. For the practical implementation of the concept a measuring device was developed and constructed, the CR Device. The device uses 64 channels for simultaneous signal recording of voltage and current time series with up to 1 kHz sampling rate. The current injection is freely programmable and allows any survey design. The measurement of the voltages is performed against a common reference (CR) electrode and thus allows the reconstruction of any dipole voltage by difference formation. A complementary, Matlab-based software package completes the measuring system. An evaluation module allows the raw data of the CR device to be read in, processed and displayed in a suitable form. An inversion module allows the inversion of measurement data into a three-dimensional subsurface model. With a modeling module, measurements over any subsurface situation can be simulated and subsequently analysed. A field measurement on a volcanic maar in the Eifel region, Germany, demonstrates the benefits of the method. A QERT profile was set-up tangentially to a conductive anomaly in the centre of the maar. The measurement data were successfully inverted into a geologically coherent 3D resistivity model.
Author: | Viktor Peter Nawa |
---|---|
URN: | urn:nbn:de:hebis:30:3-623525 |
Subtitle (English): | Development and deployment of a new 3D geoelectric measurement technique |
Referee: | Andreas Junge, Bülent Tezkan |
Advisor: | Andreas Junge |
Document Type: | Doctoral Thesis |
Language: | English |
Year of Completion: | 2021 |
Year of first Publication: | 2021 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Granting Institution: | Johann Wolfgang Goethe-Universität |
Release Date: | 2021/11/04 |
Page Number: | 196 |
First Page: | 1 |
Last Page: | 184 |
HeBIS-PPN: | 491101244 |
Institutes: | Geowissenschaften / Geographie / Geowissenschaften |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften |
Licence (German): | ![]() |