Formation of chondrule analogs aboard the International Space Station

  • Chondrules are thought to play a crucial role in planet formation, but the mechanisms leading to their formation are still a matter of unresolved discussion. So far, experiments designed to understand chondrule formation conditions have been carried out only under the influence of terrestrial gravity. In order to introduce more realistic conditions, we developed a chondrule formation experiment, which was carried out at long-term microgravity aboard the International Space Station. In this experiment, freely levitating forsterite (Mg2SiO4) dust particles were exposed to electric arc discharges, thus simulating chondrule formation via nebular lightning. The arc discharges were able to melt single dust particles completely, which then crystallized with very high cooling rates of >105 K h−1. The crystals in the spherules show a crystallographic preferred orientation of the [010] axes perpendicular to the spherule surface, similar to the preferred orientation observed in some natural chondrules. This microstructure is probably the result of crystallization under microgravity conditions. Furthermore, the spherules interacted with the surrounding gas during crystallization. We show that this type of experiment is able to form spherules, which show some similarities with the morphology of chondrules despite very short heating pulses and high cooling rates.

Download full text files

Export metadata

Metadaten
Author:Tamara KochORCiDGND, Dominik SpahrORCiDGND, Beverley J. TkalcecORCiDGND, Miles Lindner, David MergesGND, Fabian WildeORCiD, Björn WinklerORCiDGND, Frank E. BrenkerORCiDGND
URN:urn:nbn:de:hebis:30:3-626706
DOI:https://doi.org/10.1111/maps.13731
ISSN:1945-5100
Parent Title (English):Meteoritics & planetary science
Publisher:Wiley-Blackwell
Place of publication:Hoboken, NJ
Document Type:Article
Language:English
Date of Publication (online):2021/08/21
Date of first Publication:2021/08/21
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2021/12/20
Volume:56
Issue:9
Page Number:16
First Page:1669
Last Page:1684
Note:
We are grateful for financial support provided by the Dr. Rolf M. Schwiete Stiftung, the German Aerospace center DLR, NanoRacks LLC, DreamUp, Biovia, the BmWi (50JR1704) and DFG (BR2015/35-1; Wi1232/44-1), Nordlicht GmbH, and ZEISS.
Note:
Open Access funding enabled and organized by Projekt DEAL.
HeBIS-PPN:491337477
Institutes:Geowissenschaften / Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0