Kristallisation, Polymorphiescreening und Kristallstrukturbestimmung aus Röntgenpulver- und Einkristallröntgenbeugungsdaten an industriellen organischen Pigmenten und pharmazeutischen Wirkstoffen sowie großtechnischen Zwischenprodukten

  • Im Rahmen dieser kumulativen Dissertation konnte eine Methode mitentwickelt werden, die die Bestimmung der absoluten Konfiguration pharmazeutischer Verbindungen aus Röntgenpulverbeugungsdaten ermöglicht. Die Methode basiert auf der Bildung von Salzen. Die notwendige Herstellung dieser Salze mit Salzbildnern bekannter Konfiguration wurde hinsichtlich einer minimalen Ansatzgröße optimiert und erlaubt ein Arbeiten mit Mengen von unter zehn Mikrogramm. Die Kristallisation konnte sogar direkt in den Kapillaren für die Aufnahme der Pulverdiagramme durchgeführt werden. Die absolute Konfiguration einiger als Testfälle gewählter pharmazeutischer Wirkstoffe konnte auf diese Art erfolgreich bestimmt werden. Dies stellt eine erfolgreiche Erweiterung bisher verfügbarer Methoden dar. 1,1,3,3-Tetraethyl-5-nitroisoindolin (TENI) und 1,1,3,3-Tetraethyl-5-nitroisoindolin-2-oxyl (TENO) sind Zwischenstufen in der Synthese von RNS-Spinlabeln für die EPR-Spektroskopie. Die Kristallstrukturen beider Verbindungen konnten aus Einkristallbeugungsdaten bestimmt werden. TENI hat einen Schmelzpunkt nahe der Raumtemperatur. TENO hat dagegen einen wesentlich höheren Schmelzpunkt, obwohl das Molekül nur ein Sauerstoffatom zusätzlich hat. Die Kristallstruktur liefert die Erklärung für dieses Phänomen: In der Kristallstruktur von TENI findet sich als stärkste intermolekulare Wechselwirkung eine einzelne schwache, sehr lange Wasserstoffbrückenbindung. 6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydropyrimidin-5-aminiumsulfat, ein Edukt der Synthese von Leukopterin konnte als Hydrat erhalten werden. Die Kristallstruktur dieses Monohydrats konnte problemlos bestimmt werden, ebenso wie die von synthetisiertem 4-Amino-2,6-dimethylpyrimidin. Natriumethanolat wurde nach einer 180 Jahre alten Vorschrift von Liebig synthetisiert. Wie die Röntgenpulverdiagramme zeigen, bilden sich dabei jedoch Gemische von verschiedenen Phasen. Die Kristallstruktur von reinem NaOEt konnte aus Pulverdaten bestimmt werden. Ebenfalls wurden ein Diethanolsolvat sowie zwei weitere Phasen identifiziert. Vom Diethanolsolvat NaOEt · 2 HOEt konnten Einkristalle hergestellt und die Kristallstruktur aus diesen bestimmt werden. Die Kristallstrukturen von Natrium-n-propanolat (NaOnPr), Natrium-n-butanolat (NaOnBu) und Natrium-n-amylat (NaOnAm) konnten ebenfalls aus Pulverdaten aufgeklärt werden. Sie weisen ein ähnliches Na-O-Gitter wie Natriumethanolat auf, allerdings kristallisieren sie in der Raumgruppe P 4/n m m. Die abweichende Raumgruppe des NaOEt (P -4 21 m) liegt am sterischen Anspruch der Ethylgruppe. Die längeren Alkylgruppen sind hochgradig fehlgeordnet und somit im Mittel zylinderförmig. Die Ethylgruppe dagegen hat einen weniger symmetrischen Raumbedarf. Die Solvate der Alkalialkoholate wurden mit zunehmender Länge der Alkylketten instabiler. Nichtsdestotrotz konnten drei verschiedene Solvate hergestellt werden: NaOnPr · 2 HOnPr, NaOiPr · 5 HOiPr und NaOtAm · HOtAm. Ihre Kristallstrukturen konnten aus Einkristallbeugungsdaten bestimmt werden. In diesen Strukturen zeigen sich sehr unterschiedliche Strukturmotive, die teilweise die mögliche Existenz weiterer Solvatstufen andeuten. Die industriellen Rotpigmente Pigment Red 52 und Pigment Red 48 wurden im Labor unter verschiedenen Bedingungen synthetisiert. Dabei wurden neben den kommerziell verfügbaren Phasen einige neue Phasen identifiziert. Erstmals konnten Kristallstrukturen von P.R.52 und P.R.48 bestimmt werden. Von Pigment Red 52 konnte ein bisher unbekanntes Mononatriumsalz hergestellt werden. Von diesem Salz konnte ein DMSO-Solvat-Monohydrat kristallisiert werden. Aus erhaltenen Einkristallen konnte die Struktur bestimmt werden. Von Pigment Red 48 konnte ebenfalls ein bisher nicht literaturbekanntes Mononatriumsalz isoliert werden. Von zwei Hydratstufen dieser Verbindung konnten Einkristalle hergestellt und ihre Kristallstrukturen bestimmt werden. Eine weitere Phase wurde als Anhydrat identifiziert. Vom Di-Natriumsalz des P.R.52 sowie von seinem Calciumsalz wurden insgesamt fünf verschiedene Hydratstufen gefunden. Die Kristallstrukturen dieser Hydrate konnten aus Röntgenpulverbeugungsdaten bestimmt werden. Von einer Hydratstufe konnte ebenfalls ein Einkristall erhalten und die Struktur bestätigt werden. Eine Veröffentlichung ist in Vorbereitung. Die Isomere des Orangepigments Perinon werden nach gemeinsamer Synthese industriell durch Überführung in „Trennsalze“ getrennt. Weder die Molekülkonstitution der Trennsalz-Ionen, noch die chemische Zusammensetzung der Feststoffe, noch deren Kristallstrukturen waren bisher bekannt. Die industrielle Form des „trans-Trennsalzes“ konnte im Labor hergestellt werden. Eine weitere Phase des trans-Perinontrennsalzes konnte hergestellt und identifiziert werden. Durch die nachfolgende Einkristallstrukturanalyse zeigte sich, dass die Trennsalze eine völlig andere Molekülkonstitution haben, als in der Literatur beschrieben war: Statt eines planaren Perinongerüsts enthält das Trennsalz ein verdrehtes Bis(benzimidazolat)naphthalindicarboxylat-tetraanion, dessen Ladung durch Kalium-Kationen kompensiert wird. Das bisher nie als Feststoff beschriebene cis-Perinontrennsalz wurde hergestellt und kristallisiert. Es konnten Einkristalle hergestellt und die Kristallstruktur aus diesen bestimmt werden. Alle Perinontrennsalze enthalten im Kristallgitter eine beträchtliche Anzahl Wasser- und Ethanolmoleküle. Durch Festkörper-NMR-Spektroskopie konnte gezeigt werden, dass das Wasser-Ethanol-Netzwerk stark dynamisch ist. Bei der Hydrolyse der Trennsalze entstehen wieder die ursprünglichen, wasser- und lösungsmittelfreien Perinonpigmente.

Download full text files

Export metadata

Metadaten
Author:Lukas TapmeyerORCiDGND
URN:urn:nbn:de:hebis:30:3-633740
DOI:https://doi.org/10.21248/gups.63374
Place of publication:Frankfurt am Main
Referee:Martin Ulrich SchmidtGND, Christoph Saal
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2021/10/17
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/10/15
Release Date:2021/10/25
Tag:Festkörperstruktur; Pulverdiffraktometrie; Röntgenstrukturanalyse
Page Number:120
HeBIS-PPN:487072243
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht