Genetic consequences of reintroduction in two elusive European felids

  • Genetic and genomic tools have provided researchers with the opportunity to address fundamental questions regarding the reintroduction of species into their historical range with greater precision than ever before. Reintroduction has been employed as a conservation method to return locally extinct species to their native range for decades. However, it remains unknown how genetic factors may impact population establishment and persistence at the population and metapopulation level in the short- and long-term. Genetic methods are capable of producing datasets from many individuals, even when only low quality DNA can be collected. These methods offer an avenue to investigate unanswered questions in reintroduction biology, which is vital to provide evidence based management strategies for future projects. The Eurasian lynx (Lynx lynx) and European wildcat (Felis silvestris) are elusive carnivores native to Eurasia and have been the subject of multiple reintroduction attempts into their native range. During the 19th and 20th century, the Eurasian lynx was extirpated from West and Central Europe due to increasing habitat fragmentation and persecution. Similarly, the European wildcat was the subject of human persecution, residing in a few refugia in West and Central Europe. After legal protection in the 1950s, subsequent reintroduction projects of both species began in the 1970s and 1980s and continue to the present. Despite this large focus on species conservation, little attention has been given to the consequences these reintroductions have on the genetic composition of the reintroduced populations and if the populations have a chance of persisting in the long term. These species have not yet benefited from the large range of genetic and genomic techniques currently available to non-model organisms, leaving many fundamental aspects of their reintroduction poorly understood. In my dissertation, I investigate demography, population structure, genetic diversity and inbreeding at the population and metapopulation level in both species. In the introduction, which lays the foundation for the subsequent chapters of this PHD, I provide background on reintroduction, its role in conservation and the genetic consequences on populations, especially populations of apex and mesocarnivores. In Publication I, I investigated the reemergence of the European wildcat in a low mountain region in Germany using fine-scale spatial analysis. I found that the reintroduced population has persisted and merged with an expanding natural population. The reintroduced population showed no genetic differentiation from the natural population suggesting there is a good chance this population has retained sufficient genetic diversity despite reintroduction. In Publication II, I tracked population development and genetic diversity over 15 years in a reintroduced lynx population to determine the genetic ramifications on a temporal scale. I found slow genetic erosion after a period of outbreeding, which fits in line with other reintroduced taxa sharing similar demographic histories. I also found the number of genetic founders to be a fraction of the total released individuals, indicating that reintroduced populations of elusive carnivores may have fewer founder individuals than previously thought. In Publication III, I sampled all surviving lynx reintroductions in West and Central Europe as well as 11 natural populations to compare levels of genetic diversity and inbreeding across the species distribution. I found that all reintroduced populations have lower genetic variability and higher inbreeding than natural populations, which urgently requires further translocations to mitigate possible negative consequences. These translocations could stem from other reintroduced populations or from surrounding natural populations. The results contribute to a growing body of evidence indicating that inbreeding is likely to be more prevalent in wild populations than previously understood. Finally, in the discussion I explore how genetic methods can be applied to post-reintroduction monitoring of felid species to illuminate questions relating to genetic composition after release. The methods employed in these studies and in future work will be highly dependent on the research questions posed. Additionally, I investigate the drivers of the observed genetic patterns including founder size, source population, environmental factors, and population growth. I found that genetic diversity loss patterns across these two felid species are not clearly defined, however, management actions can be taken to mitigate the negative effects of reintroductions. These management actions include further translocation, introducing a sufficient number of released individuals and situating reintroductions adjacent to natural populations. All of these actions can minimize genetic drift and inbreeding, two factors which negatively impact small populations. This thesis further supports mounting evidence that genetic considerations should be assessed before releasing individuals, which allows for incorporation of scientific evidence into the planning process thereby increasing the overall success of reintroduction projects. Ultimately, the resources developed during this dissertation provide a solid baseline and foundation for future work regarding the consequences of reintroductions. This is especially important as an increasing number of species are at risk of extinction and reintroductions of both the European wildcat and Eurasian lynx, as well as many others, are planned in the coming years.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Sarah Ashley Mueller
Place of publication:Frankfurt am Main
Referee:Imke SchmittORCiDGND, Markus PfenningerORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2021/10/19
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/10/18
Release Date:2021/10/27
Page Number:148
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht