Neurotoxicities associated with immune checkpoint inhibitor therapy

  • Cancer therapies have experienced significant advances in recent years. While conventional cytotoxic chemotherapy has long been the cornerstone for the treatment of many tumor entities, uprising immunotherapies have revolutionized the therapeutic landscape. Among them, immune checkpoint inhibitors (ICIs) with their demonstrated increased overall survival rates and response rates in cancer patients are now FDA-approved for metastatic melanoma and multiple other malignancies. Despite their clinical benefit in cancer therapies, ICIs can induce unique autoimmune-like toxicities known as immune-related adverse events (irAEs), which can involve any organ system including the nervous system. Although neurotoxicities are rare complications of ICI therapy they are often severe and can lead to long-term disability or even death if left untreated. Neurological irAEs exhibit a broad spectrum of clinical presentations affecting the entire nervous system. Diagnosing neurological irAEs is often challenging as symptoms and laboratory findings can be uncharacteristic for common neurological disorders and clinical experience with ICI-mediated toxicities is still limited. In light of expanding clinical indications for ICIs, physicians will encounter ICI-mediated neurotoxicities more frequently. Thus, thorough characterizations of the diverse set of neurological irAEs are essential for optimal patient care, the prevention of severe ICI-mediated complications, and the development of diagnostic and therapeutic algorithms. This work portrays the clinical presentation, management and outcome of neurological irAEs following ICI therapies. Patients with neurotoxicities related to ICIs who presented at the Yale New Haven Hospital between January 2014 and June 2018 were retrospectively identified from the quality control database. A comprehensive chart review was performed and data regarding patient demographics, medical history, ICI regimen and neurotoxicity were recorded. In total, 18 patients with neurological irAEs following ICI therapy for melanoma, small cell lung cancer, non-small cell lung cancer, and Merkel-cell carcinoma were identified. Neurotoxicities included central nervous system disorders comprising central demyelinating disorder,autoimmune encephalitis predominantly affecting the grey matter, and aseptic meningitis. Peripheral nervous system toxicities included sensorimotor polyneuropathy and myasthenia gravis. Cases of hypophysitis were also recorded. Time to onset of neurological irAEs ranged from 1 to72 weeks with a median of five weeks. In all patients ICIs were held and steroids initiated. Additional immunomodulatory therapies were required in nine patients. Sixteen of 18 patients showed neurological improvement. Fourteen patients had highgrade neurotoxicity (grade 3-4), six of whom deceased due to cancer progression, while none of the low-grade neurotoxicity patients (grade 1-2) died. High-grade neurotoxicity was identified as a negative prognostic marker for overall survival (p = 0.046). This work shows that neurotoxicities present early-onset, rapidly progressive complications of ICIs with a broad spectrum of clinical phenotypes affecting the central nervous system, peripheral nervous system, and neuroendocrine system. A high index of caution for neurological irAEs is warranted throughout ICI therapy as timely diagnosis and management can reduce morbidity and mortality. Randomized clinical trials are needed to develop standardized diagnostic and therapeutic algorithms of ICI-induced neurotoxicities.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Sophie Lan-Linh Duong
Place of publication:Frankfurt am Main
Referee:Jochen RoeperORCiD, Michael Wilfried RonellenfitschORCiDGND
Advisor:Jochen Roeper, Joachim M. Baehring
Document Type:Doctoral Thesis
Date of Publication (online):2021/12/04
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/11/30
Release Date:2021/12/23
Tag:Checkpoint Inhibitor; Neurotoxicity
Page Number:42
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht