Evaluation of a clinical decision support system for rare diseases: a qualitative study

  • Background: Rare Diseases (RDs) are difficult to diagnose. Clinical Decision Support Systems (CDSS) could support the diagnosis for RDs. The Medical Informatics in Research and Medicine (MIRACUM) consortium developed a CDSS for RDs based on distributed clinical data from eight German university hospitals. To support the diagnosis for difficult patient cases, the CDSS uses data from the different hospitals to perform a patient similarity analysis to obtain an indication of a diagnosis. To optimize our CDSS, we conducted a qualitative study to investigate usability and functionality of our designed CDSS. Methods: We performed a Thinking Aloud Test (TA-Test) with RDs experts working in Rare Diseases Centers (RDCs) at MIRACUM locations which are specialized in diagnosis and treatment of RDs. An instruction sheet with tasks was prepared that the participants should perform with the CDSS during the study. The TA-Test was recorded on audio and video, whereas the resulting transcripts were analysed with a qualitative content analysis, as a ruled-guided fixed procedure to analyse text-based data. Furthermore, a questionnaire was handed out at the end of the study including the System Usability Scale (SUS). Results: A total of eight experts from eight MIRACUM locations with an established RDC were included in the study. Results indicate that more detailed information about patients, such as descriptive attributes or findings, can help the system perform better. The system was rated positively in terms of functionality, such as functions that enable the user to obtain an overview of similar patients or medical history of a patient. However, there is a lack of transparency in the results of the CDSS patient similarity analysis. The study participants often stated that the system should present the user with an overview of exact symptoms, diagnosis, and other characteristics that define two patients as similar. In the usability section, the CDSS received a score of 73.21 points, which is ranked as good usability. Conclusions: This qualitative study investigated the usability and functionality of a CDSS of RDs. Despite positive feedback about functionality of system, the CDSS still requires some revisions and improvement in transparency of the patient similarity analysis.
Metadaten
Author:Jannik SchaafORCiDGND, Martin SedlmayrORCiDGND, Brita SedlmayrORCiDGND, Hans-Ulrich ProkoschORCiDGND, Holger StorfORCiDGND
URN:urn:nbn:de:hebis:30:3-636686
DOI:https://doi.org/10.1186/s12911-021-01435-8
ISSN:1472-6947
Parent Title (English):BMC medical informatics and decision making
Publisher:BioMed Central
Place of publication:London
Document Type:Article
Language:English
Date of Publication (online):2021/02/18
Date of first Publication:2021/02/18
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2022/09/15
Tag:Clinical decision support systems; Computer-assisted diagnosis; Rare diseases; Usability
Volume:21.2021
Issue:art. 65
Article Number:65
Page Number:11
First Page:1
Last Page:11
Note:
Availability of data and materials:
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Note:
MIRACUM is funded in context of the Medical Informatics Funding Schema by the German Federal Ministry of Education and Research (BMBF). Funding reference number: FKZ 01ZZ1801A, 01ZZ1801C, 01ZZ1801L. Open Access funding enabled and organized by Projekt DEAL.
Note:
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Note:
The peer review history for this article is available at https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01435-8/peer-review.
Institutes:Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0