The hydrogen-dependent CO2 reductase from Acetobacterium woodii and Thermoanaerobacter kivui : Capture and storage of hydrogen and carbon dioxide in formic acid by acetogenic bacteria

  • In Zeiten der globalen Klimaerwärmung und des Klimawandels werden Strategien zur Vermeidung, Reduzierung oder Wiederverwertung von CO2-Emissionen sowie die Abkehr von fossilen Energieträgern immer wichtiger. Aus diesem Grund finden Technologien zur Bindung, Speicherung und Wiederverwertung von CO2 immer größere Aufmerksamkeit und diverse chemische als auch biologische Ansätze werden verfolgt. Eine dieser Möglichkeiten umfasst die Reduktion von CO2 mit Hilfe von molekularem Wasserstoff. Im Prozess der direkten Hydrogenierung von CO2 zu Ameisensäure bzw. Formiat wird nicht nur CO2 gebunden, sondern ebenfalls H2 in flüssiger Form gespeichert. Die Ameisensäure weist gegenüber dem hochflüchtigen Wasserstoffgas verschiedene Vorteile auf und zählt zu der Gruppe der flüssigen, organischen Wasserstoffspeicherverbindungen. Daneben ist das Einsatzgebiet von Ameisensäure als Ausgangstoff für Chemikalien oder als mikrobielle Kohlenstoffquelle sehr vielseitig und die Verbindung erfreut sich zunehmenden Interesses. Die Natur hält biologische Katalysatoren (Enzyme) für die Reduktion von CO2 bereit. Die Gruppe der obligat anaeroben, acetogenen Bakterien verwendet so genannte Formiatdehydrogenasen als CO2-Reduktasen, um CO2 im Wood-Ljungdahl-Weg (WLP) der Bakterien fixieren zu können. Diese Enzyme katalysieren die reversible 2-Elektronen Reduktion von CO2 zu Ameisensäure. Kürzlich konnte aus den beiden Vertretern A. woodii (mesophil) und T. kivui (thermophil) ein neuartiger, cytoplasmatischer Enzymkomplex isoliert werden. Dieser Enzymkomplex koppelt die Reduktion von CO2 direkt an die Oxidation von H2 und wird deshalb als Wasserstoff-abhängige CO2-Reduktase bezeichnet (engl. hydrogen-dependent CO2 reductase, HDCR). Die HDCR katalysiert dabei die reversible Hydrogenierung von CO2 zu Formiat mit annähernd gleicher Kinetik und gleichen Umsatzraten. Die bei der CO2 Reduktion erreichten Umsatzraten übertrafen dabei bisherige chemische als auch biologische Katalysatoren um mehre Größenordnungen. Im Hinblick auf die besonderen katalytischen Eigenschaften der HDCRs wurde in dieser Arbeit die biotechnologische Anwendbarkeit der Enzyme als Biokatalysatoren zur Speicherung und Sequestrierung von H2 und CO2 in Form von Ameisensäure untersucht. Im Speziellen wurde ein HDCR-basiertes Ganz-Zell-System für das thermophile Bakterium T. kivui entwickelt. Um eine Ganz-Zell basierte Umwandlung von H2 und CO2 zu Formiat zu gewährleisten, wurde zuvor die Weiterverwertung des Formiats zu Acetat im WLP gestoppt. Durch eine Reduktion des zellulären ATP-Gehalts konnte eine weitere Prozessierung des aus der HDCR-Reaktion gebildeten Formiats im Zellstoffwechsel des Bakteriums unterbunden werden. Die Formiatbildung aus H2 und CO2 wurde in Zellsuspensionen von T. kivui untersucht und charakterisiert. Hier zeigten T. kivui Zellen die höchste spezifische Formiatbildungsrate, die bis dato in der Literatur genannt wurde. Ebenfalls wurde in dieser Arbeit die Umwandlung von Synthesegas (H2 + CO2 und CO) und CO zu Formiat geprüft. Bioenergetisch entkoppelte und auf CO-adaptierte T. kivui Zellen konnten in der Tat Synthesegas exklusiv zu Formiat umsetzen. Um die CO-Verwertung zu Acetat und Formiat im Stoffwechsel der Rnf- (A. woodii) und Ech-Acetogenen (T. kivui) verstehen zu können, wurden Mutanten von Δhdcr, ΔcooS, ΔhydBA, Δrnf and Δech2 von A. woodii und T. kivui zur Hilfe genommen. In beiden Organismen war die CO-basierte Formiatbildung vom Vorhandensein eines funktionalen HDCR-Enzymkomplexes abhängig. Für eine mögliche biotechnologische Anwendung wurde die Maßstabsvergrößerung des Ganz-Zell-Systems angestrebt und hin zum Bioreaktormaßstab mit kontrollierten Prozessbedingungen skaliert. Diese Arbeit demonstriert die effiziente Umwandlung von H2 und CO2 zu Formiat und vice versa unter Verwendung eines Rührkesselreaktors. Der Prozess zeigte eine Effizienz von 100% für die Umwandlung von CO2 zu Formiat und spezifische Raten von 48.3 mmol g-1 h-1 wurden von A. woodii Zellen erreicht. Die spezifische H2-Produktionsrate (qH2) aus der Ameisensäureoxidation betrug 27.6 mmol g-1 h-1 und mehr als 2.12 M Ameisensäure konnte über einen Zeitraum von 195 h oxidiert werden. Wichtige Parameter der Enzymkatalyse wie Wechselzahl (engl. turnover frequency, TOF) und katalytische Produktivität (engl. turnover number, TON) wurden ebenfalls im Versuch bestimmt. Basierend auf dem generierten Prozessverständnis und der effizienten Reversibilität der katalysierten Reaktionen wurde abschließend ein Ganz-Zell-basierter Bioreaktoraufbau gewählt, der die vielfache Speicherung und Freisetzung von H2 in einem einzigen Rührkesselreaktor und unter Verwendung des gleichen Katalysators ermöglicht. Über eine Prozesszeit von 2 Wochen und 15 CO2 Reduktions-/Formiat Oxidations-Zyklen konnte so im Mittel 330 mM Formiat produziert und oxidiert werden. Zusammenfassend thematisiert diese Arbeit die biotechnologische Anwendbarkeit eines Ganz-Zell-Systems zur Speicherung und Sequestrierung von H2 und CO2 in Form von Formiat und vice versa. Die katalytische Aktivität der betrachteten Organismen fußt dabei auf der Aktivität eines neuartigen Enzymkomplexes, der erstmals in der Gruppe der acetogenen Bakterien entdeckt wurde. Der als Wasserstoff-abhängige CO2-Reduktase bezeichnete Enzymkomplex könnte die zukünftige Konzipierung Enzym-inspirierter und effizienter chemischer Katalysatoren vorantreiben. Auch der Einsatz des Enzyms/der Zellen in so genannten Hydrogelen oder die Etablierung elektrochemischer Prozesse sind vorstellbar. Diese Arbeit stellt somit eine Basis für mögliche zukünftige Anwendungen des etablierten Ganz-Zell-Systems von A. woodii und T. kivui im Bereich der Wasserstoffökonomie dar.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fabian M. SchwarzGND
URN:urn:nbn:de:hebis:30:3-681972
DOI:https://doi.org/10.21248/gups.68197
Place of publication:Frankfurt am Main
Referee:Volker MüllerORCiD, Eric J. N. HelfrichORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/05/17
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/05/12
Release Date:2022/06/01
Tag:Acetogenic bacteria; Carbon capture; Hydrogen storage; Hydrogen-dependent CO2 reductase
Page Number:160
Last Page:155
Note:
Kumulative Dissertation – enthält die Verlagsversionen (Versions of Record) der folgenden Artikel:

-Schwarz, F.M. and Müller, V. (2020) Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol. Biofuels 13: 32.

-Schwarz, F.M., Ciurus, S., Jain, S., Baum, C., Wiechmann, A., Basen, M. and Müller, V. (2020) Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb. Biotechnol. 13: 2044-2056.

-Schwarz, F.M., Oswald, F. and Müller, V. (2021) Acetogenic conversion of H2 and CO2 into formic acid and vice versa in a fed-batch operated stirred tank bioreactor. ACS Sustain. Chem. Eng. 9: 6810-6820.
HeBIS-PPN:495229652
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht