The role of SRSF6 in the alternative splicing response to hypoxia

  • Die Vorläuferform der eukaryotischen mRNA (prä-mRNA) durchläuft, eine Reihe von Prozessierungs-Schritte, die schließlich zu der Synthese einer „reifen“ und Exportkompetenten mRNA führt. prä-mRNA Spleißen ist ein essentieller Teilschritt dieser Reifung bei der intragene Sequenzen, sogenannte Introns, von der prä-mRNA entfernt werden, während Exons legiert werden. Das prä-mRNA Spleißen wird durch das Spleißosom katalysiert. Dieser Mega-Dalton Komplex, besteht aus fünf Sub-Komplexen, die sich wiederum aus katalytisch aktiven „kleinen nukleären Ribonukleinsäuren“ (snRNAs) und einer Vielzahl von proteinogenen Faktoren zusammensetzen. Diese Subkomplexe, bezeichnet als snRNPs (small nuclear Ribonucleoprotein Particles), binden die prä-mRNA an charakteristischen Sequenzen und richten die prä-mRNA durch eine Reihe von Konformations-Änderungen so aus, dass benachbarte Exons in Kontakt treten und über eine biochemische Ligations-Reaktion verbunden werden können. Die Exon- bzw Intronerkennung der snRNPs wird durch zahlreiche Spleißfaktoren reguliert. Eine Proteinfamilie, die essentiell für die Regulierung des Spleißens ist, sind Serin/Arginin-reiche Proteine (SR-Proteine). Diese binden vorzugsweise an das 3‘ oder 5’ Ende von Exons, rekrutieren snRNPs und stimulieren dadurch die Exon-Inklusion. Durch diese Stimulierung können Spleiß-Events reguliert und gezielt spezifische Exons ausgeschlossen oder eingeschlossen werden. Dieser Prozess, der als alternatives Spleißen (AS) bezeichnet wird, tritt in 95% des menschlichen Transkriptoms auf und erweitert die Diversität eines Organismus, da verschiedene Transkripte von demselben Gen erzeugt werden können und folglich die Translation unterschiedlicher Proteine mit distinkten Funktionen ermöglicht wird. Darüber hinaus verfügt die Zelle durch das AS über eine weitere posttranskriptionale Genregulationsebene, die insbesondere unter zellulären Stressbedingungen zur Expression von alternativen Protein-Isoformen von der Zelle genutzt wird. Eine in medizinischer Hinsicht besonders relevante Stressbedingung ist die sogenannte Hypoxie, die eine Sauerstoff-Unterversorgung von Zellen oder Gewebebereichen beschreibt. Hypoxie bzw. hypoxische Bereiche finden sich in Krebszellen und treten in 90% aller soliden Tumoren auf. Als Teil der Hypoxie Stress-Antwort, verfügt die Zelle über einen Adaptations-Mechanismus, der durch Hypoxieinduzierbare Faktoren (HIF) vermittelt wird. Diese Faktoren induzieren die Transkription zahlreicher Gene und stimulieren die Expression von Stressfaktoren, die an der zellulären Adaption der Hypoxie beteiligt sind. Einer dieser Faktoren ist der vaskuläre endotheliale Wachstumsfaktor A (VEGFA), welcher unter hypoxischen Bedingungen sekretiert wird und dadurch die Proliferation von Endothelzellen, die Neubildung von Blutgefäßen und damit die Vaskularisation des hypoxischen Bereichs stimuliert. Die zelluläre Anpassung ist jedoch nicht nur auf die transkriptionelle Regulation des HIF-vermittelten Hypoxie Signalwegs beschränkt, sondern wird auf multiplen Genexpressions-Ebenen reguliert. Obwohl bekannt ist, dass tausende Transkripte unter hypoxischen Bedingungen alternativ gespleißt werden, sind die Faktoren, die die zelluläre Stress-Antwort durch AS regulieren, sowie deren molekularer Mechanismus jedoch weitestgehend unbekannt. Diese Arbeit umfasst die Identifizierung und Charakterisierung von AS Events, sowie den Einfluss und die Regulation von Spleißfaktoren auf AS unter hypoxischen Bedingungen. Hierzu führten wir globale Genexpressions- und AS-Analysen in HeLaKarzinomzelllinien unter Normoxie (21% O2) und Hypoxie (0.2% O2) durch und zeigen, dass 7962 Gene nach 24h Hypoxie unterschiedlich exprimiert werden. Über AS-Analysen konnten 4434 Transkripte identifiziert werden, die bei Hypoxie über AS reguliert sind. Dabei trat „Exon-Skipping“ als das am häufigsten auftretende AS-Events auf. Über PCR basierte Validierungs-Experimente konnten 5 regulierte Transkripte nachgewiesen werden. Dabei weisen Exon 3 und 4 in BORA, Exon 6 in MDM4 und Exon 4-5 in CSSP1 Exon-Skipping Events auf, während Exon-Inklusionen in CEP192 Exon 28 und in der 3’UTR von EIF4A2 validiert werden konnten. Darüber hinaus wurde im Rahmen der AS-Analyse die Regulation des sogenannten „backsplicings“ bei Hypoxie untersucht. Im Gegensatz zum linearen Spleißens, wird beim backsplicing das 5’Ende und das 3’Ende von Exons verbunden, was die Bildung von sogenannten zirkulären RNAs (circRNAs) zufolge hat. Obwohl nur wenige Funktionen dieser RNA-Klasse bekannt sind, wurde die Regulation von circRNAs während der Zell-Differenzierung sowie in diversen Krebszellen beschrieben. Dabei können circRNAs als microRNA- oder Protein-Schwämme fungieren oder dienen als Protein-Interaktion Plattform und regulieren dabei die Genexpression.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Camila Freitas StahlORCiDGND
URN:urn:nbn:de:hebis:30:3-702966
DOI:https://doi.org/10.21248/gups.70296
Place of publication:Frankfurt am Main
Referee:Michaela Müller-McNicollORCiD, Katharina ZarnackORCiDGND
Advisor:Michaela Müller-McNicoll
Document Type:Doctoral Thesis
Language:English
Year of Completion:2019
Date of first Publication:2022/12/05
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/02/20
Release Date:2022/12/14
Page Number:169
HeBIS-PPN:502560894
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht