Sublytic gasdermin-D pores captured in atomistic molecular simulations

  • Gasdermin-D (GSDMD) is the ultimate effector of pyroptosis, a form of programmed cell death associated with pathogen invasion and inflammation. After proteolytic cleavage by caspases activated by the inflammasome, the GSDMD N-terminal domain (GSDMDNT) assembles on the inner leaflet of the plasma membrane and induces the formation of large membrane pores. We use atomistic molecular dynamics simulations to study GSDMDNT monomers, oligomers, and rings in an asymmetric plasma membrane mimetic. We identify distinct interaction motifs of GSDMDNT with phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylserine (PS) head-groups and describe differential lipid binding between the pore and prepore conformations. Oligomers are stabilized by shared lipid binding sites between neighboring monomers acting akin to double-sided tape. We show that already small GSDMDNT oligomers form stable, water-filled and ion-conducting membrane pores bounded by curled beta-sheets. In large-scale simulations, we resolve the process of pore formation by lipid detachment from GSDMDNT arcs and lipid efflux from partial rings. We find that that high-order GSDMDNT oligomers can crack under the line tension of 86 pN created by an open membrane edge to form the slit pores or closed GSDMDNT rings seen in experiment. Our simulations provide a detailed view of key steps in GSDMDNT-induced plasma membrane pore formation, including sublytic pores that explain nonselective ion flux during early pyroptosis.

Export metadata

Metadaten
Author:Stefan L. SchäferORCiD, Gerhard HummerORCiD
URN:urn:nbn:de:hebis:30:3-730707
DOI:https://doi.org/10.1101/2022.06.02.494496
Parent Title (English):bioRxiv
Document Type:Preprint
Language:English
Date of Publication (online):2022/06/03
Date of first Publication:2022/06/03
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/03/27
Issue:2022.06.02.494496
Page Number:30
HeBIS-PPN:506728617
Institutes:Physik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International