Andrea Spyrantis, Tirza Woebbecke, Daniel Friedrich Rueß, Anne Constantinescu, Andreas Gierich, Klaus Luyken, Veerle Visser-Vandewalle, Eva Herrmann, Florian Geßler, Marcus Alexander Czabanka, Harald Treuer, Maximilian Ingolf Ruge, Thomas Michael Freiman
- Background: The development of robotic systems has provided an alternative to frame-based stereotactic procedures. The aim of this experimental phantom study was to compare the mechanical accuracy of the Robotic Surgery Assistant (ROSA) and the Leksell stereotactic frame by reducing clinical and procedural factors to a minimum.
Methods: To precisely compare mechanical accuracy, a stereotactic system was chosen as reference for both methods. A thin layer CT scan with an acrylic phantom fixed to the frame and a localizer enabling the software to recognize the coordinate system was performed. For each of the five phantom targets, two different trajectories were planned, resulting in 10 trajectories. A series of five repetitions was performed, each time based on a new CT scan. Hence, 50 trajectories were analyzed for each method. X-rays of the final cannula position were fused with the planning data. The coordinates of the target point and the endpoint of the robot- or frame-guided probe were visually determined using the robotic software. The target point error (TPE) was calculated applying the Euclidian distance. The depth deviation along the trajectory and the lateral deviation were separately calculated.
Results: Robotics was significantly more accurate, with an arithmetic TPE mean of 0.53 mm (95% CI 0.41–0.55 mm) compared to 0.72 mm (95% CI 0.63–0.8 mm) in stereotaxy (p < 0.05). In robotics, the mean depth deviation along the trajectory was −0.22 mm (95% CI −0.25 to −0.14 mm). The mean lateral deviation was 0.43 mm (95% CI 0.32–0.49 mm). In frame-based stereotaxy, the mean depth deviation amounted to −0.20 mm (95% CI −0.26 to −0.14 mm), the mean lateral deviation to 0.65 mm (95% CI 0.55–0.74 mm).
Conclusion: Both the robotic and frame-based approach proved accurate. The robotic procedure showed significantly higher accuracy. For both methods, procedural factors occurring during surgery might have a more relevant impact on overall accuracy.
MetadatenAuthor: | Andrea SpyrantisORCiDGND, Tirza WoebbeckeORCiD, Daniel Friedrich RueßORCiDGND, Anne ConstantinescuGND, Andreas Gierich, Klaus LuykenGND, Veerle Visser-VandewalleORCiDGND, Eva HerrmannORCiDGND, Florian GeßlerORCiDGND, Marcus Alexander CzabankaORCiDGND, Harald TreuerGND, Maximilian Ingolf RugeORCiDGND, Thomas Michael FreimanORCiDGND |
---|
URN: | urn:nbn:de:hebis:30:3-620469 |
---|
DOI: | https://doi.org/10.3389/fnbot.2022.762317 |
---|
ISSN: | 1662-5218 |
---|
Parent Title (English): | Frontiers in neurorobotic |
---|
Publisher: | Frontiers Research Foundation |
---|
Place of publication: | Lausanne |
---|
Document Type: | Article |
---|
Language: | English |
---|
Date of Publication (online): | 2022/03/25 |
---|
Date of first Publication: | 2022/03/25 |
---|
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
---|
Release Date: | 2024/01/30 |
---|
Tag: | mechanical accuracy; phantom study; robot-guided stereotaxy; stereotactic frame; stereotactic neurosurgery |
---|
Volume: | 16 |
---|
Issue: | art. 762317 |
---|
Article Number: | 762317 |
---|
Page Number: | 8 |
---|
First Page: | 1 |
---|
Last Page: | 8 |
---|
HeBIS-PPN: | 519211170 |
---|
Institutes: | Medizin |
---|
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
---|
Sammlungen: | Universitätspublikationen |
---|
Licence (German): | Creative Commons - CC BY - Namensnennung 4.0 International |
---|