A Hurwitz divisor on the moduli of Prym curves
- For genus g=2i≥4 and the length g−1 partition μ=(4,2,…,2,−2,…,−2) of 0, we compute the first coefficients of the class of D¯¯¯¯(μ) in PicQ(R¯¯¯¯g), where D(μ) is the divisor consisting of pairs [C,η]∈Rg with η≅OC(2x1+x2+⋯+xi−1−xi−⋯−x2i−1) for some points x1,…,x2i−1 on C. We further provide several enumerative results that will be used for this computation.
Author: | Viorel Andrei BudORCiDGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-722671 |
DOI: | https://doi.org/10.1007/s10711-021-00663-6 |
ISSN: | 1572-9168 |
ArXiv Id: | http://arxiv.org/abs/2104.14947 |
Parent Title (German): | Geometriae dedicata |
Publisher: | Springer Science + Business Media B.V |
Place of publication: | Dordrecht [u.a.] |
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2021/12/21 |
Date of first Publication: | 2021/12/21 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Date of final exam: | 2023/02/28 |
Release Date: | 2024/02/26 |
Volume: | 216 |
Issue: | 6 |
Article Number: | 6 |
Page Number: | 31 |
HeBIS-PPN: | 519211871 |
Institutes: | Informatik und Mathematik / Mathematik |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Sammlungen: | Universitätspublikationen |
Licence (German): | Creative Commons - Namensnennung 4.0 |