A Hurwitz divisor on the moduli of Prym curves

  • For genus g=2i≥4 and the length g−1 partition μ=(4,2,…,2,−2,…,−2) of 0, we compute the first coefficients of the class of D¯¯¯¯(μ) in PicQ(R¯¯¯¯g), where D(μ) is the divisor consisting of pairs [C,η]∈Rg with η≅OC(2x1+x2+⋯+xi−1−xi−⋯−x2i−1) for some points x1,…,x2i−1 on C. We further provide several enumerative results that will be used for this computation.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Viorel Andrei BudORCiDGND
URN:urn:nbn:de:hebis:30:3-722671
DOI:https://doi.org/10.1007/s10711-021-00663-6
ISSN:1572-9168
ArXiv Id:http://arxiv.org/abs/2104.14947
Parent Title (German):Geometriae dedicata
Publisher:Springer Science + Business Media B.V
Place of publication:Dordrecht [u.a.]
Document Type:Article
Language:English
Date of Publication (online):2021/12/21
Date of first Publication:2021/12/21
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Date of final exam:2023/02/28
Release Date:2024/02/26
Volume:216
Issue:6
Article Number:6
Page Number:31
HeBIS-PPN:519211871
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0