N,N'-Bis(trimethylsilyl)benzamidinato-Koniplexe von Titan und Zirkon. Die Kristallstrukturen von [C6H5-C(NSiMe3)2MCl3]2; M = Ti, Zr
N,N'-bis(trimethylsilyl)benzamidinato complexes of titanium and zirconium. The crystal structures of [C6H5-C(NSiMe3)2MCl3]2 ; M = Ti, Zr
- The N,N'-bis(trimethylsilyl)benzamidinato complexes [C6H5 -C(NSiMe3)2MCl3]2(M = Ti. Zr) have been prepared by the reactions of N,N,N'-tris(trimethylsilyl)benzamidine [C6H5-C(NSiMe3)N(SiMe3)2] with titanium tetrachloride, and zirconium tetrachloride, respec-tively. The compounds form moisture sensitive, dark red (Ti) and white (Zr) crystals, which were characterized by crystal structure determinations. [C6H5-C(NSiMe3)2TiCl3]2 : space group P21/rc. Z = 2, 4373 observed independent reflexions, R = 0.034. Lattice dimensions (-90 °C): a - 959.0(8); b = 1196.5(8); c = 1770.9(11) pm; β = 93.79(4)°. [C6H5-C(NSiMe3)2ZrCl3]2 : space group P21/n. Z = 2, 3160 observed independent reflexions, R = 0.031. Lattice dimensions (-90 °C): a = 971.6(7); b = 1222.2(9); c = 1792.9(10) pm; β = 93.51(5)°.
Both complexes crystallize isotypically, forming centrosymmetric dimeric molecules via chloro bridges with bond lengths of 242.0 and 253.8 pm (Ti), and of 253.7 and 264.9 pm (Zr). The metal atoms complete their distorted octahedral surroundings with two chlorine ligands and the nitrogen atoms of the chelating amidinato ligand. The N atoms of the amidinato group are in equatorial and axial positions. This accounts for the different metal-nitrogen bond lengths of 207 pm (ax) and 199 pm (eq) in the titanium compound and 219 pm (ax) and 214 pm (eq) in the zirconium complex.