Gradient-consistent enrichment of finite element spaces for the DNS of fluid-particle interaction

  • Highlights • Monolithic scheme for particulate flows preventing an oscillating pressure along the interface. • The choice of enriching shape functions is driven by the properties of its gradient instead of its value. • The choice of enriching shape functions inherits a natural stabilization on small cut elements. Abstract We present gradient-consistent enriched finite element spaces for the simulation of free particles in a fluid. This involves forces being exchanged between the particles and the fluid at the interface. In an earlier work [23] we derived a monolithic scheme which includes the interaction forces into the Navier-Stokes equations by means of a fictitious domain like strategy. Due to an inexact approximation of the interface oscillations of the pressure along the interface were observed. In multiphase flows oscillations and spurious velocities are a common issue. The surface force term yields a jump in the pressure and therefore the oscillations are usually resolved by extending the spaces on cut elements in order to resolve the discontinuity. For the construction of the enriched spaces proposed in this paper we exploit the Petrov-Galerkin formulation of the vertex-centered finite volume method (PG-FVM), as already investigated in [23]. From the perspective of the finite volume scheme we argue that wrong discrete normal directions at the interface are the origin of the oscillations. The new perspective of normal vectors suggests to look at gradients rather than values of the enriching shape functions. The crucial parameter of the enrichment functions therefore is the gradient of the shape functions and especially the one of the test space. The distinguishing feature of our construction therefore is an enrichment that is based on the choice of shape functions with consistent gradients. These derivations finally yield a fitted scheme for the immersed interface. We further propose a strategy ensuring a well-conditioned system independent of the location of the interface. The enriched spaces can be used within any existing finite element discretization for the Navier-Stokes equation. Our numerical tests were conducted using the PG-FVM. We demonstrate that the enriched spaces are able to eliminate the oscillations.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Susanne HöllbacherGND, Gabriel WittumGND
URN:urn:nbn:de:hebis:30:3-777850
DOI:https://doi.org/10.1016/j.jcp.2019.109003
ISSN:0021-9991
Parent Title (English):Journal of computational physics
Publisher:Elsevier
Place of publication:Amsterdam
Document Type:Article
Language:English
Date of Publication (online):2019/10/18
Date of first Publication:2019/10/07
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/03/04
Tag:Enriched finite elements; Immersed boundary method; Monolithic scheme; Petrov-Galerkin finite volumes; Spurious pressure
Volume:401.2020
Issue:109003
Article Number:109003
Page Number:28
HeBIS-PPN:521819377
Institutes:Wissenschaftliche Zentren und koordinierte Programme / Center for Scientific Computing (CSC)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung-Nicht kommerziell - Keine Bearbeitung 4.0