PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms

  • Highlights • We present PolarCAP, a deep learning model that can classify the polarity of a waveform with a 98% accuracy. • The first-motion polarity of seismograms is a useful parameter, but its manual determination can be laborious and imprecise. • We demonstrate that in several cases the model can assign trace polar-ity more accurately than a human analyst. Abstract The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Megha ChakrabortyORCiD, Claudia Quinteros CartayaORCiD, Wei Li, Johannes Faber, Georg RümpkerORCiD, Horst StöckerORCiDGND, Nishtha SrivastavaORCiD
URN:urn:nbn:de:hebis:30:3-782860
DOI:https://doi.org/10.1016/j.aiig.2022.08.001
ISSN:2666-5441
Parent Title (English):Artificial Intelligence in Geosciences
Publisher:Elsevier
Place of publication:Amsterdam
Document Type:Article
Language:English
Date of Publication (online):2022/09/12
Date of first Publication:2022/09/08
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/03/26
Tag:Convolutional; Earthquake waveforms; First-motion polarity
Volume:3
Page Number:7
First Page:46
Last Page:52
HeBIS-PPN:517755505
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International