Inhomogeneous condensation in the Gross-Neveu model in non-integer spatial dimensions 1 ≤ d < 3
- he Gross-Neveu model in the N→∞ approximation in d=1 spatial dimensions exhibits a chiral inhomogeneous phase (IP), where the chiral condensate has a spatial dependence that spontaneously breaks translational invariance and the Z2 chiral symmetry. This phase is absent in d=2, while in d=3 its existence and extent strongly depends on the regularization and the value of the finite regulator. This work connects these three results smoothly by extending the analysis to non-integer spatial dimensions 1≤d<3, where the model is fully renormalizable. To this end, we adapt the stability analysis, which probes the stability of the homogeneous ground state under inhomogeneous perturbations, to non-integer spatial dimensions. We find that the IP is present for all d<2 and vanishes exactly at d=2. Moreover, we find no instability towards an IP for 2≤d<3, which suggests that the IP in d=3 is solely generated by the presence of a regulator.