- Cortical tracking of stimulus features (such as the envelope) is a crucial tractable neural mechanism, allowing us to investigate how we process continuous music. We here tested whether cortical and behavioural tracking of beat, typically related to rhythm processing, are modulated by pitch predictability. In two experiments (n=20, n=52), participants’ ability to tap along to the beat of musical sequences was measured for tonal (high pitch predictability) and atonal (low pitch predictability) music. In Experiment 1, we additionally measured participants’ EEG and analysed cortical tracking of the acoustic envelope and of pitch surprisal (using IDyOM). In both experiments, finger-tapping performance was better in the tonal than the atonal condition, indicating a positive effect of pitch predictability on behavioural rhythm processing. Neural data revealed that the acoustic envelope was tracked stronger while listening to atonal than tonal music, potentially reflecting listeners’ violated pitch expectations. Our findings show that cortical envelope tracking, beyond reflecting musical rhythm processing, is modulated by pitch predictability (as well as musical expertise and enjoyment). Stronger cortical surprisal tracking was linked to overall worse envelope tracking, and worse finger-tapping performance for atonal music. Specifically, the low pitch predictability in atonal music seems to draw attentional resources resulting in a reduced ability to follow the rhythm behaviourally. Overall, cortical envelope and surprisal tracking were differentially related to behaviour in tonal and atonal music, likely reflecting differential processing under conditions of high and low predictability. Taken together, our results show diverse effects of pitch predictability on musical rhythm processing.