Studies and mitigation of space-charge distortions in the ALICE TPC in LHC run 2

  • Das Experiment ALICE (A Large Ion Collider Experiment) am CERN (Conseil Européen pour la Recherche Nucléaire) LHC (Large Hadron Collider) fokussiert sich auf die Untersuchung stark wechselwirkender Materie unter extremen Bedingungen. Solche Bedingungen existierten wenige Mikrosekunden nach dem Urknall, als die Temperaturen so hoch waren, dass Partonen (Quarks und Gluonen) nicht zu farbneutralen Hadronen gebunden waren. In solch einem Quark-Gluon-Plasma können sich die Partonen frei bewegen, wobei sie allerdings mit anderen Partonen aus dem Medium stark wechselwirken. Am LHC werden Bleikerne auf ultra-relativistische Energien von bis zu 2.68 TeV beschleunigt und zur Kollision gebracht, wobei für weniger als 10 fm/c ein QGP entsteht, das schnell expandiert. Die Partonen hadronisieren, wenn das QGP sich auf Temperaturen von weniger als der Phasenübergangstemperatur von ≈155MeV abkühlt. Die finalen Teilchen- und Impulsverteilungen werden werden vom ALICE Detektor gemessen und geben Aufschluss auf elementare Prozesse im QGP. Die TPC (Time Projection Chamber ) ist eines der wichtigsten Detektorsysteme von ALICE. Sie trägt maßgeblich zur Rekonstruktion von Teilchenspuren und zur Identifikation der Teilchensorten bei mittleren Rapiditäten bei. Die TPC ist eine große zylindrische Spurendriftkammer und besteht aus einem 88mˆ3 großen Gasvolumen, das von der zentralen Hochspannungselektrode in zwei Seiten geteilt wird. Durchquert ein Teilchen das Gasvolumen, ionisiert es entlang seiner Spur eine spezifische Menge von Gasatomen. Die Ionisationselektronen driften entlang des extrem homogenen elektrischen Feldes zu den Auslesekammern an den Endkappen auf beiden Seiten der TPC. Die Messung der Position und der Menge der Ionisationselektronen erlaubt die Rekonstruktion der Teilchenspur sowie, in Kombination mit der Impulsmessungen über die Krümmung der Teilchenspur im Magnetfeld, die Bestimmung der Teilchensorte über den spezifischen Energieverlust pro Wegstrecke im Gas. Das Gasvolumen der TPC war in LHC Run 1 (2010–2013) mit Ne-CO_2 (90-10) gefüllt. Die Gasmischung wurde zu Ar-CO_2 (88-12) für Run 2 (2015–2018) geändert. Als Auslesekammern wurden Vieldrahtproportionalkammern verwendet, die aus einer segmentierten Ausleseebene, einer Anodendrahtebene, einer Kathodendrahtebene und einem Gating-Grid (GG) bestehen. Das GG is eine zusätzliche Drahtebene, die durch zwei verschiedene Spannungseinstellungen transparent oder undurchlässig für Elektronen und positive Ionen geschaltet werden kann. In den ersten Daten von Run 2 bei hohen Interaktionsraten wurden große Verzerrungen der gemessenen Spurpunkte beobachtet, die auf Grund von Verzerrungen des Driftfeldes auftreten und nicht von Daten aus Run 1 bekannt waren. Diese Verzerrungen treten nur sehr lokal an den Grenzen von manchen der inneren Auslesekammern (IROCs) auf. Zudem wurden auch große Verzerrungen in einer (C06) der äußeren Auslesekammern (OROCs) festgestellt, die sich bei einem bestimmten Radius über die ganze Breite der Kammer erstrecken. Die Ergebnisse dieser Arbeit befassen sich mit der Untersuchung jener Verzerrungen und ihrer Ursache, sowie mit der Entwicklung von Strategien um die Verzerrungen zu minimieren. Messungen der Verzerrungen in den IROCs und Vergleiche mit Simulationen lassen darauf schließen, dass die Verzerrungen von positiver Raumladung hervorgerufen werden, die durch Gasverstärkung an sehr begrenzten Regionen der Auslesekammern entsteht und sich durch das Driftvolumen bewegt. Es werden charakteristische Abhängigkeiten von der Interaktionsrate sowie systematische Veränderungen bei Umkehrung der Orientierung des Magnetfeldes gemessen. Eine erneute Analyse von Run 1 Daten mit den Methoden aus Run 2 zeigt, dass die Verzerrungen bereits in Run 1 auftraten, jedoch durch die Ne-Gasmischung und niedrigere Interaktionsraten um eine Größenordnung kleiner waren. Neue Daten aus Run 2, für die die Gasmischung zeitweise wieder von Ar-CO_2 zu Ne-CO_2- N_2 geändert wurde, bestätigen die Ergebnisse der Run 1 Datenanalyse. Der Ursprung der Raumladung wird systematisch eingegrenzt. Es werden einzelne IROCs identifiziert, an deren Anodendrähten die Raumladung entsteht. Physikalische Modelle ermöglichen es, die Entstehung der Raumladung auf das Volumen zurückzuführen, das sich zwischen zwei IROCs befindet. Damit besteht die Vermutung, dass einzelne Spitzen von Anodendrähten am äußeren Rand dieser IROCs in das Gasvolumen hineinragen und somit hohe elektrische Felder erzeugen, an denen Gasverstärkung stattfindet. Die positiven Ionen können dann ungehindert in das Driftvolumen gelangen. Um diesen Effekt zu unterdrücken, wird das Potential der Cover-Elektroden angepasst, die sich auf den Befestigungsvorrichtungen der Drahtebenen an den Kammerrändern befinden. Dadurch kann die Menge von Ionisationselektronen, die in das Volumen zwischen zwei IROCs hineindriftet und vervielfacht wird, eingeschränkt werden. Über elektro-statische Simulationen und Messungen wird eine Einstellung für das Cover-Elektroden-Potential gefunden, mit der die Verzerrungen auf 30 % reduziert werden können. Die Verzerrungen in OROC C06 entstehen durch positive Ionen, die aus der Verstärkungsregion in das Driftvolumen gelangen, da an dieser bestimmten Stelle zwei aufeinanderfolgende GG-Drähte den Kontakt verloren haben. Die Verzerrungen werden um mehr als einen Faktor 3 reduziert, indem die Hochspannung der Anodendrähte um 50 V und somit der Gasverstärkungsfaktor um einen Faktor 2 verringert wird und indem das Potential der noch funktionierenden GG-Drähte erhöht wird. Zusammenfassend konnten die lokalen Raumladungsverzerrungen für die letzte Pb−Pb Strahlzeit von Run 2 auf weniger als 1cm bei den höchsten Interaktionsraten verringert werden. Zudem wurde der Anteil des von Raumladungsverzerrungen betroffenen Volumens der TPC signifikant verringert, sodass die ursprüngliche Auflösung der Spurrekonstruktion wieder erreicht werden konnte.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ernst HellbärORCiDGND
URN:urn:nbn:de:hebis:30:3-817949
DOI:https://doi.org/10.21248/gups.81794
Place of publication:Frankfurt am Main
Referee:Harald AppelshäuserORCiDGND, Christoph BlumeORCiDGND
Advisor:Harald Appelshäuser
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/01/26
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/12/18
Release Date:2024/01/26
Page Number:119
HeBIS-PPN:515074950
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International