Symmetric powers of algebraic and tropical curves: a non-Archimedean perspective

  • We show that the non-Archimedean skeleton of the d-th symmetric power of a smooth projective algebraic curve X is naturally isomorphic to the d-th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of X. The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems.

Download full text files

Export metadata

Metadaten
Author:Madeline BrandtORCiD, Martin UlirschORCiDGND
URN:urn:nbn:de:hebis:30:3-818886
DOI:https://doi.org/10.1090/btran/113
ISSN:2330-0000
ArXiv Id:http://arxiv.org/abs/1812.08740
Parent Title (English):Transactions of the American Mathematical Society. Series B
Publisher:American Mathematical Society
Place of publication:Providence, RI
Document Type:Article
Language:English
Year of Completion:2022
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/02/23
Volume:9
Page Number:33
First Page:586
Last Page:618
Note:
Gefördert durch den Open-Access-Publikationsfonds der Goethe-Universität.
HeBIS-PPN:520379977
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Informatik und Mathematik
Licence (German):License LogoCreative Commons - Namensnennung-Nicht kommerziell 3.0