Anna Elisabeth Böhmer, Fei Chen, William R. Meier, Mingyu Xu, Gil Drachuck, Michael Merz, Paul W. Wiecki, Sergey L. Bud’ko, Vladislav Borisov, Roser Valentí, Morten H. Christensen, Rafael M. Fernandes, Christoph Meingast, Paul C. Canfield
- The CaK(Fe1−xNix)4As4 superconductors resemble the archetypal 122-type iron-based materials but have a crystal structure with distinctly lower symmetry. This family hosts one of the few examples of the so-called spin-vortex crystal magnetic order, a non-collinear magnetic configuration that preserves tetragonal symmetry, in contrast to the orthorhombic collinear stripe-type magnetic configuration common to the 122-type systems. Thus, nematic order is completely absent from its phase diagram. To investigate the evolution of nematic fluctuations in such a case, we present elastoresistance and elastic modulus measurements in CaK(Fe1−xNix)4As4 (x=0−0.05) combined with phenomenological modeling and density functional theory. We find clear experimental signatures of considerable nematic fluctuations, including softening of the Young's modulus Y[110] and a Curie-Weiss type divergence of the B2g elastoresistance coefficient in CaK(Fe0.951Ni0.049)4As4. Overall, nematic fluctuations within this series bear strong similarities to the hole-doped Ba1−xKxFe2As2 series, including a substitution-induced sign change. Our theoretical analysis addresses the effect of the specific crystal symmetry of the 1144-type structure in determining its magnetic ground state and on the nematic fluctuations.