Engineering topological phases guided by statistical and machine learning methods

  • The search for materials with topological properties is an ongoing effort. In this article we propose a systematic statistical method, supported by machine learning techniques, that is capable of constructing topological models for a generic lattice without prior knowledge of the phase diagram. By sampling tight-binding parameter vectors from a random distribution, we obtain data sets that we label with the corresponding topological index. This labeled data is then analyzed to extract those parameters most relevant for the topological classification and to find their most likely values. We find that the marginal distributions of the parameters already define a topological model. Additional information is hidden in correlations between parameters. Here we present as a proof of concept the prediction of the Haldane model as the prototypical topological insulator for the honeycomb lattice in Altland-Zirnbauer (AZ) class A. The algorithm is straightforwardly applicable to any other AZ class or lattice, and could be generalized to interacting systems.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas MertzORCiDGND, Roser ValentíORCiDGND
URN:urn:nbn:de:hebis:30:3-823686
DOI:https://doi.org/10.1103/PhysRevResearch.3.013132
ISSN:2643-1564
ArXiv Id:http://arxiv.org/abs/2008.11213
Parent Title (English):Physical review research
Publisher:American Physical Society
Place of publication:College Park, MD
Document Type:Article
Language:English
Date of Publication (online):2021/02/10
Date of first Publication:2021/02/10
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/02/16
Volume:3
Issue:1, Art. 013132
Article Number:013132
Page Number:10
Institutes:Physik / Physik
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International