Pseudoelasticity of SrNi2P2 micropillar via double lattice collapse and expansion

  • The maximum recoverable strain of most crystalline solids is less than 1% because plastic deformation or fracture usually occurs at a small strain. In this work, we show that a SrNi2P2 micropillar exhibits pseudoelasticity with a large maximum recoverable strain of ~14% under uniaxial compression via unique reversible structural transformation, double lattice collapse-expansion that is repeatable under cyclic loading. Its high yield strength (~3.8±0.5 GPa) and large maximum recoverable strain bring out the ultrahigh modulus of resilience (~146±19MJ/m3) a few orders of magnitude higher than that of most engineering materials. The double lattice collapse-expansion mechanism shows stress-strain behaviors similar with that of conventional shape memory alloys, such as hysteresis and thermo-mechanical actuation, even though the structural changes involved are completely different. Our work suggests that the discovery of a new class of high performance ThCr2Si2-structured materials will open new research opportunities in the field of pseudoelasticity

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Shuyang XiaoORCiD, Vladislav BorisovORCiD, Guilherme Gorgen LesseuxORCiD, Sarshad RommelORCiD, Gyuho SongORCiD, Jessica M. MaitaORCiD, Mark AindowORCiD, Roser ValentíORCiDGND, Paul C. CanfieldORCiD, Seok-Woo LeeORCiD
URN:urn:nbn:de:hebis:30:3-824519
URL:https://arxiv.org/abs/2108.11999v1
DOI:https://doi.org/10.48550/arXiv.2108.11999
ArXiv Id:http://arxiv.org/abs/2108.11999v1
Parent Title (English):arXiv
Publisher:arXiv
Document Type:Preprint
Language:English
Date of Publication (online):2021/08/26
Date of first Publication:2021/08/26
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/02/20
Tag:SrNi2P2; density functional theory; maximum recoverable strain; micropillar compression; pseudoelasticity
Issue:2108.11999 Version 1
Edition:Version 1
Page Number:45
HeBIS-PPN:516154818
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0