A physics-based neural network reconstruction of the dense matter equation of state from neutron star observables

  • We introduce a novel technique that utilizes a physics-driven deep learning method to reconstruct the dense matter equation of state from neutron star observables, particularly the masses and radii. The proposed framework involves two neural networks: one to optimize the EoS using Automatic Differentiation in the unsupervised learning scheme; and a pre-trained network to solve the Tolman–Oppenheimer–Volkoff (TOV) equations. The gradient-based optimization process incorporates a Bayesian picture into the proposed framework. The reconstructed EoS is proven to be consistent with the results from conventional methods. Furthermore, the resulting tidal deformation is in agreement with the limits obtained from the gravitational wave event, GW170817.

Download full text files

Export metadata

Metadaten
Author:Shriya SomaORCiDGND, Lingxiao WangORCiD, Shuzhe ShiORCiDGND, Horst StöckerORCiDGND, Kai ZhouORCiD
URN:urn:nbn:de:hebis:30:3-825665
DOI:https://doi.org/10.1051/epjconf/202327606007
ISSN:2100-014X
Parent Title (English):The European physical journal. Web of Conferences
Publisher:EDP Sciences
Place of publication:Les Ulis
Document Type:Article
Language:English
Date of Publication (online):2023/03/01
Date of first Publication:2023/03/01
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Contributing Corporation:International Conference on Strangeness in Quark Matter (20. : 2022 : Busan)
Release Date:2024/05/08
Volume:276
Issue:06007
Article Number:06007
Page Number:4
Institutes:Physik / Physik
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International