Magnus Wolf, Bruno Lopes da Silva Ferrette, Raphael T. F. Coimbra, Menno de Jong, Marcel Nebenführ, David Prochotta, Yannis Schöneberg, Konstantin Zapf, Jessica Rosenbaum, Hannah A. Mc Intyre, Julia Maier, Clara Cavalcanti Salomão de Souza, Lucas M. Gehlhaar, Melina J. Werner, Henrik Oechler, Marie Wittekind, Moritz Sonnewald, Maria A. Nilsson, Axel Janke, Sven Winter
- The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a slender, up to 60 cm long, northern Atlantic fish that dwells in open seagrass habitats and has recently expanded its distribution range. The snake pipefish is part of the family Syngnathidae (seahorses and pipefish) that has undergone several characteristic morphological changes, such as loss of pelvic fins and elongated snout. Here, we present a highly contiguous, near chromosome-scale genome of the snake pipefish assembled as part of a university master’s course. The final assembly has a length of 1.6 Gbp in 7,391 scaffolds, a scaffold and contig N50 of 62.3 Mbp and 45.0 Mbp and L50 of 12 and 14, respectively. The largest 28 scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions so far identified in vertebrate genomes. Demographic modeling using the PSMC framework indicates a peak in effective population size (50 – 100 kya) during the last interglacial period and suggests that the species might largely benefit from warmer water conditions, as seen today. Our updated snake pipefish assembly forms an important foundation for further analysis of the morphological and molecular changes unique to the family Syngnathidae.