Elektrische Reizung neuronalen Gewebes mit Kleinst-Vielkanalelektroden : Modellrechnungen und Messungen unter realitätsnahen Bedingungen

  • Die künstliche elektrische Stimulation bietet oftmals die einzige Möglichkeit, nicht vorhandene bzw. verloren gegangene motorische sowie sensorische Aktivitäten in gewissem Umfang wieder herzustellen. Im Falle von tauben Patienten wird zur Erlangung von Hörempfindungen die elektrische Stimulation des peripheren auditorischen Systems mit Hilfe von Cochlea- oder Hirnstammimplantaten standardmäßig eingesetzt. Es ist dabei notwendig, natürliche neuronale Entladungsmuster durch die elektrisch evozierten Entladungsmuster nachzubilden. Bei einkanaligen Systemen kann nur die Zeitstruktur des Signals dargeboten werden. Mehrkanalige Systeme bieten hier noch zusätzlich die Möglichkeit auch örtlich selektiv bestimmte Nervenfasergruppen zu stimulieren und damit die Ortsstruktur in den Entladungsmustern zu repräsentieren. So hat es sich gezeigt, dass die Sprachverständlichkeit durch Verwendung von Mehrkanal-Elektroden verbessert werden kann. Grundvoraussetzung hierfür ist die Optimierung der Kanalseparation durch Kleinst-Vielkanalelektroden und der Wahl einer optimalen Codierstrategie des Signals. Die Codierstrategie ist abhängig von dem jeweiligen spezifischen Einsatzbereich. So gaben z.B. schon Clopton und Spelman (1995) zu bedenken, dass die als selektiv berechnete tripolare (S3) Konfiguration nur für einen bestimmten Stimulationsstrombereich gültig ist. Hinzu kommt es bei simultaner Verwendung benachbarter Kanäle zu schmerzhaften Lautheitssummationen. Ursache hierfür sind einerseits die Überlagerung der durch die Elektroden stimulierten neuronalen Bereiche und andererseits die Wechselwirkungen von Strömen benachbarter Elektrodenkanäle. Diese Effekte führen nicht nur zu einer Verringerung der räumlichen Stimulationsauflösung, sondern auch zu einer Einschränkung der exakten Abbildung der Zeitstruktur innerhalb der einzelnen Stimulationskanäle. Die Techniken und Grundlagen der elektrischen Stimulation von neuronalem Gewebe mit Kleinst-Vielkanalelektroden sind bisher kaum untersucht worden. Ziel dieser Arbeit war es, ein mathematisches Modell zu implementieren und Qualitätsparameter zu definieren, mit deren Hilfe die Verteilung des elektrischen Feldes und die daraus resultierende neuronale Erregung beschrieben und optimiert werden kann. Zur Verifizierung des Modells sollten Methoden und Techniken entwickelt werden, die eine hochauflösende Abtastung der elektrischen Felder und Messung der neuronalen Daten innerhalb eines Messsystems ermöglichen. Bei der neuronalen Stimulation mit Kleinst-Vielkanalelektroden ergibt sich eine Reihe von Problemen grundsätzlicher Art. So werden bei elektrodenferner Stimulation größere Stimulationsströme benötigt als bei elektrodennaher Stimulation, wobei für den Strombedarf die Stimulationskonfiguration eine entscheidende Rolle spielt: Der S1 Stimulationsmodus benötigt weniger Strom zur Erreichung großer Stimulationstiefen als der S2 Stimulationsmodus. Der größte Strom wird mit zunehmendem Elektrodenabstand gleichermaßen von dem S3 und S7 Stimulationsmodus benötigt. Gleichzeitig verfügen Kleinst-Vielkanalelektroden bauartbedingt aber nur über kleine Elektrodenkontaktoberflächen und lassen daher auf Grund der kritischen Feldstärke nur geringe Stimulationsströme zu. Ein weiteres Problem besteht bei diesen Kleinst-Elektrodendimensionen in der konkreten Lage der Neurone an denen eine neuronale Erregung evoziert wird. Die Dimension der Kleinst-Vielkanalelektroden liegt bei einem Elektrodenkanalkontaktdurchmesser von 70 µm bereits in der Größenordnung der zu stimulierenden Neurone mit einem Durchmesser von 10 bis 15 µm. Dies macht sich bei den Messungen besonders dann deutlich bemerkbar, wenn nicht der Stimulationsstrom die Größe des überschwelligen Bereichs modelliert, sondern wenn der Elektrodenkanalabstand durch die Wahl der entsprechenden Elektrodenkanäle verändert wird. Hier weisen zwar die meisten neuronalen Antworten noch in die sich aus dem Modell ergebende Richtung, jedoch kommt es zu einer höheren Streuung der Ergebnisse als bei Messungen mit der Folienelektrode, die eine Kontaktfläche von 170 µm besitzt. Es gibt also eine Reihe von begrenzenden Faktoren bei der optimalen Dimensionierung der Stimulationselektrode, die sowohl abhängig von der physiologischen Topologie ist als auch von den eingesetzten Stimulationskonfigurationen. Es ist also zur Stimulation die Wahl der optimalen Codierstrategie und die richtige Dimensionierung der Stimulationselektrode sowie der Elektrodenkanalabstände von entscheidender Bedeutung. Die neuronalen Messungen wurden erstmalig für diese Fragestellung am Hirnschnitt durchgeführt, da sie, im Gegensatz zu in-vivo Versuchen, eine exakte Positionierung der Elektroden auf dem Hirnschnitt unter Sichtkontrolle durch das Mikroskop erlauben. Es wurden aus den neuronalen Messungen die Amplituden und Latenzen der exzitatorischen postsynaptischen Potenziale (EPSP) sowie der Feldpotenziale ausgewertet. Der Versuchsaufbau macht es möglich, die Potenzialfelder mit genau den Konfigurationen abzutasten, mit denen auch die neuronalen Messungen des Hirnschnittes durchgeführt wurden. Das implementierte Programm zur Berechnung der Feldverteilung besitzt zum Messprogramm ein Interface, so dass es möglich ist, die Einstellungen des Experimentes, wie Stimulationskonfigurationen, Abtastraster des Feldes und die Koordinaten des Messraums, in der Modellrechnung zu verwenden. Somit ist ein direktes Vergleichen zwischen Messung und Berechnung möglich. In nachfolgenden Arbeiten können die vorliegenden Ergebnisse als Grundlage für in-vivo Versuche eingesetzt werden. Zur Durchführung der Messungen wurden sehr kleine Elektroden aus eigener Herstellung verwendet und es wurden uns freundlicherweise neu entwickelte Folienelektroden des Fraunhofer Instituts St. Ingbert zur Verfügung gestellt. Die Größe der verwendeten Kleinst-Vielkanalelektroden aus eigener Herstellung lag um ca. eine Zehnerpotenz unter den aktuell eingesetzten Elektrodentypen und ist speziell für den direkten Kontakt zwischen Elektrode und Gewebe konzipiert. Dies entspricht dem typischen Einsatzbereich von Hirnstammimplantaten. Dies ist auch notwendig, um eine maximale räumliche Separation der erzeugten Felder zu ermöglichen. Außerdem erlaubte das Elektrodendesign auf Grund der hohen Anzahl der Elektrodenkanäle und durch variieren der Konfigurationen die Feldrichtung zu bestimmen, ohne die Elektrode neu auf den Hirnschnitt aufsetzen zu müssen. Der in dieser Arbeit implementierte Algorithmus zur Berechnung der Feldverteilungen und die eingeführten Qualitätsparameter erlauben, die unterschiedlichen Stimulationskonfigurationen miteinander zu vergleichen und zu optimieren. Die Ergebnisse aus diesen Modellrechnungen wurden sowohl mit den Messungen der elektrischen Felder als auch mit den Ergebnissen aus den neuronalen Antworten verglichen. Der im Rahmen dieser Arbeit erstellte Versuchsaufbau bestand aus einer über mehrere Mikromanipulatoren getriebene mikrometergenaue Positioniereinrichtung. Es konnten sowohl die Stimulationselektrode als auch die Elektrode zur Aufzeichnung der neuronalen Daten gesteuert werden. Die Steuerung des gesamten Setup, d.h. die Positionierung, die Aufzeichnung der neuronalen Daten und die Generierung der Stimulationsmuster wurde über den zentralen Messrechner durch ein hierfür entwickeltes Computerprogramm gesteuert. Die Versuche wurden über ein inverses Mikroskop durch eine CCD-Kamera aufgezeichnet. Der entscheidende Vorteil des in dieser Arbeit gewählten Modellansatzes besteht in der grundsätzlichen Beschreibung der Feldverteilung bei vielkanaliger Stimulation, so dass diese auch auf andere Elektrodenformen bzw. Konfigurationen und Dimensionen übertragbar ist. Es lassen sich so den verschiedenen Konfigurationen nach bestimmten Qualitätskriterien bewerten und an die jeweilige Zielrichtung der Stimulation anpassen. Die berechneten Felder konnten erfolgreich in der Messeinrichtung generiert und nachgemessen werden. Außerdem ist es gelungen, differenzierte neuronale Aktivitäten auszuwerten, welche die Aussagen des Modells abstützen.

Download full text files

  • 20040321XPAusdruckEndePDF09-600.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Norbert TönderGND
URN:urn:nbn:de:hebis:30:3-843031
Place of publication:Frankfurt am Main
Referee:Arild LacroixGND, Rainer KlinkeGND
Advisor:Rainer Hartmann
Document Type:Doctoral Thesis
Language:German
Year of Completion:2004
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/03/03
Release Date:2024/05/08
Page Number:165
HeBIS-PPN:518845494
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG