Polarer Transport des Alzheimer-amyloid-precursor-Proteins in Epithelzellen

  • Einleitung APP und die Alzheimersche Krankheit Das Alzheimer Amyloid Precursor Protein (APP) ist ein Typ-1 Transmembranprotein mit einem Molekulargewicht von 110-135 kDa [Selkoe et al. 1988, Weidemann et al. 1989]. Es wird in allen bisher untersuchten Geweben exprimiert und weist in mehrzelligen Organismen einen hohen Konservierungsgrad auf [Robakis et al. 1987, Rosen et al. 1989]. APP ist unter anderem Vorläufer des β-A4-Peptides (Aβ), das in extrazellulären Aggregaten (Plaques) im Zentralen Nervensystem von Alzheimer-Patienten akkumuliert [Masters et al. 1985]. Die sogenannte „Amyloid-Hypothese der Alzheimerschen Erkrankung“ besagt, dass das Aβ-Peptid eine pathologische Kaskade initiiert, die zur Bildung von amyloiden Plaques, neuronaler Funktionsstörung und letztendlich Demenz führt [Hardy 1997, Selkoe 1999]. Prozessierung des APP Der Hauptanteil des zellulären APP wird über den (nicht pathogenen) α-Sekretase-Weg prozessiert, wobei das sekretorische APP (α-sAPP) freigesetzt wird, das beinahe der gesamten N-terminalen Ektodomäne des APP entspricht. Die α-Sekretase spaltet APP innerhalb der Aβ-Domäne und verhindert somit die Bildung des pathogenen Aβ-Peptides. Kandidaten für die Katalyse dieser Spaltung sind Proteasen der ADAM-Familie [Buxbaum et al. 1998, Hooper et al. 1997, Koike et al. 1999, Lammich et al. 1999, Loechel et al. 1998]. Das Aβ-Peptid entsteht bei der sukzessiven proteolytischen Spaltung des APP durch die sogenannten β- und γ-Sekretasen. Bei der β-Sekretase handelt es sich um die Aspartat-Protease BACE (β-site APP cleaving enzyme) [Hussain et al. 1999, Sinha et al. 1999, Vassar et al. 1999, Yan et al. 1999]. Die Identität der γ-Sekretase ist noch nicht endgültig geklärt, jedoch spielen Presenilin-1 und -2 sowie Nicastrin eine Rolle bei der γ-Spaltung des APP [de Strooper et al. 1998, 1999, Struhl et al. 2000, Wolfe et al. 1999]. Unter physiologischen Bedingungen wird ca. 30% des APP durch α-Sekretasen prozessiert, ein viel geringerer Anteil dagegen durch die β-Sekretasen. Mehr als die Hälfte des zellulären APP bleibt ungespalten [Koo 2002]. Biologische Funktionen des APP Die Funktionen des APP lassen sich unterscheiden nach Funktionen der kurzen zytoplasmatischen Domäne und der ca. 100 kDa großen Ektodomäne (α-sAPP). Die zytoplasmatische Domäne des APP stellt eine Plattform für die Bindung verschiedener Interaktionspartner dar. In Kooperation mit den Bindungspartnern spielt APP eine Rolle in unterschiedlichsten zellulären Prozessen wie vesikulärem Transport, Zellmotilität oder Genaktivierung [Review siehe Annaert und de Strooper 2002]. Die meisten Interaktionspartner der zytoplasmatischen Domäne des APP binden an die YENPTY-Sequenz nahe des C-Terminus des APP, die auch als Signal für die Endozytose des APP dient [Perez et al. 1999]. Die sekretorische Ektodomäne des APP hat eine wachstumsfördernde und neuroprotektive Wirkung. Um diese Wirkung auszuüben, bindet α-sAPP an einen bisher unbekannten Rezeptor, der auf der Zelloberfläche diverser Zelltypen wie Neuronen, Fibroblasten, Thyreozyten und Keratinozyten exprimiert wird [Review siehe Schmitz et al. 2002]. Polarer Transport des APP In polaren MDCK Zellen wird das APP-Holoprotein fast ausschließlich zur basolateralen Zelloberfläche transportiert [Haass et al. 1994]. Es wurde gezeigt, dass dieser polare Transport des APP durch Tyrosin 653 in der zytoplasmatischen Domäne des APP beeinflusst wird. Mutation dieses Tyrosins zu Alanin führte zu partieller Fehlsortierung von ca. 50% des APP zur apikalen Plasmamembran. Die Sekretion von α-sAPP dagegen fand in MDCK-Zellen unabhängig von Tyrosin 653 basolateral statt [Haass et al. 1995]. Intrazellulärer Proteintransport durch Adaptor-Protein-Komplexe Am intrazellulären Proteintransport sind Adaptor-Protein-Komplexe (APs) beteiligt, die bestimmte Sortierungssignale in der zytoplasmatischen Domäne von Frachtproteinen erkennen. Bis heute sind vier dieser tetrameren AP-Komplexe (AP-1 bis AP-4) bekannt, die zum Teil verschiedene Isoformen einzelner Untereinheiten aufweisen, z.B. AP-1A und AP-1B [Review: Boehm und Bonifacino 2001]. Jeder AP-Komplex spielt eine Rolle in einem bestimmten Schritt des intrazellulären Proteintransportes. Für AP-1A wird eine Funktion im anterograden und retrograden Transport zwischen Endosomen und TGN beschrieben [Review: Hinners und Tooze 2003]. AP-2 vermittelt Endozytose verschiedener Transmembranproteine von der Plasmamembran [Review: Kirchhausen 2002]. AP-3 spielt eine Rolle im Proteintransport zu Lysosomen und Lysosom-ähnlichen Organellen wie Melanosomen [Robinson und Bonifacino 2001]. AP-4 sowie AP1-B sortieren Proteine zur basolateralen Plasmamembran polarer Epithelzellen [Fölsch et al. 1999, Simmen etal. 2002]. Die Sortierungsmotive, die von Adaptor-Komplexen in der zytoplasmatischen Domäne der Fracht-Proteine gebunden werden, enthalten in den meisten Fällen entweder ein Tyrosin oder zwei Leucine. Das gesamte Motiv besteht aus jeweils vier bis zehn Aminosäuren [Review siehe Bonifacino und Traub 2003]. Ziele der Arbeit In der vorliegenden Arbeit wurde der polare Transport des APP in Epithelzellen untersucht. Ein Ziel war es, Faktoren zu finden, die den basolateralen Transport des APP in Abhängigkeit von Tyrosin 653 vermitteln. Des weiteren sollte der Transport von APP und sAPP in verschiedenen Epithelzelllinien analysiert werden. Um ein gutes Werkzeug zur Detektion von APP zu haben, wurden GFP-APP-Fusionsproteine hergestellt und charakterisiert. Ergebnisse und Diskussion GFP-APP-Fusionsproteine wurden hergestellt und in MDCK-, FRT- und LLC-PK1-Zellen stabil exprimiert. Die Charakterisierung der GFP-APP-Fusionsproteine durch Immunfluoreszenzanalysen zeigte, dass die chimeren Proteine im TGN sowie in peripheren Vesikeln lokalisiert sind und mit endogenem APP stark kolokalisieren. GFPAPP war somit gut geeignet, um den intrazellulären Transport des APP zu untersuchen. Eine Analyse der zytoplasmatischen Domäne des APP im Bereich des Tyrosin 653 zeigte, dass dieses Tyrosin und die drei folgenden Aminosäuren (YTSI) ein Konsensus-Motiv für die Bindung von tetrameren Adaptor-Protein-Komplexen darstellen. Zu Beginn dieser Arbeit waren AP-1 bis AP-3 bereits gut charakterisiert, wohingegen für AP-4 keine Funktion bekannt war. In Kollaboration mit Simmen et al. konnte gezeigt werden, dass AP-4 den basolateralen Transport einiger Proteine vermittelt [Simmen et al. 2002]. Immunfluoreszenzanalysen lokalisierten AP-4 im TGN und peripheren Vesikeln, die unterschiedlich von AP-1A/B markierten Strukturen waren. Da kaum Kolokalisation von AP-4 und AP-1A/B zu beobachten war, ist die Lokalisation von AP-4 und AP-1B, das auch eine Rolle im basolateralen Proteintransport spielt, in unterschiedlichen Subdomänen des TGN und unterschiedlichen vesikulären Strukturen anzunehmen. Polarer Transport des APP durch Adaptor-Protein-Komplexe Die mögliche Funktion von AP-1 und AP-4 im Transport von APP wurde zunächst mit Hilfe von in vitro-Bindungsstudien untersucht. Dazu wurde die zytoplasmatische Domäne des APP als GST-Fusionsprotein kloniert und exprimiert. Die Frachtproteinbindenden Untereinheiten von AP-1 und AP-4 wurden unter Verwendung von radioaktiv markiertem Methionin durch in vitro-Transkription und -Translation hergestellt. In Bindungsstudien interagierten AP-1A und AP-1B mit der zytoplasmatischen Domäne des APP, nicht aber AP-4. Diese Ergebnisse deuten an, dass AP-1A und AP-1B eine Rolle im intrazellulären Transport von APP spielen könnten. AP-4 dagegen scheint nicht an diesem Prozess beteiligt zu sein. Durch Mutation des Tyrosin 653 in APP zu Alanin (Y653A) wurde die Interaktion zwischen AP-1B und APP stark verringert, was darauf hindeutet, dass dieses Tyrosin einen Teil des Bindungsmotivs für AP-1B darstellt. Übereinstimmend damit entspricht die genaue Aminosäureabfolge des Y653TSI-Motivs den Sotierungsmotiv-Präferenzen von AP-1B [Ohno et al. 1999]. Die Interaktion von AP-1A dagegen war mit WildtypAPP und der Tyrosin-Mutante vergleichbar und scheint somit auf einem anderen Interaktions-Motiv zu basieren. AP-1A und AP-1B erkennen somit unterschiedliche Sortierungsmotive in der zytoplasmatischen Domäne des APP und kooperieren möglicherweise im intrazellulären Transport des APP. Diese Ergebnisse sind der erste Bericht über eine Interaktion von Adaptor-Protein-Komplexen mit der zytoplasmatischen Domäne des APP. Die Rolle von AP-1B im basolateralen Transport von APP wurde genauer untersucht mit Hilfe der LLC-PK1 Zelllinie, die kein AP-1B exprimiert [Ohno et al. 1999]. In LLCPK1-Zellen werden verschiedene Proteine unpolar zur apikalen und basolateralen Membran verteilt, die in MDCK-Zellen durch Interaktion mit AP-1B basolateral transportiert werden [Fölsch et al. 1999, Sugimoto et al. 2002]. Um den Transport von APP in polaren LLC-PK1-Zellen zu untersuchen, wurde Plasmamembran-ständiges GFP-APP durch zwei unabhängige Methoden nachgewiesen: die apikale oder basolaterale Oberfläche der Zellen wurde selektiv entweder biotinyliert oder mit GFPAntikörpern markiert. Beide Methoden zeigten, dass GFP-APP in LLC-PK1-Zellen sowohl an der apikalen als auch an der basolateralen Zelloberfläche lokalisiert ist. Somit wird auch APP in diesen Zellen im Vergleich zu MDCK-Zellen anders sortiert. Dieses Ergebnis festigt die Hypothese einer Funktion von AP-1B im Transport von APP, die aufgrund der Daten der in vitro-Bindungsstudien aufgestellt wurde. Polare Sekretion des sAPP ist unabhängig vom Transport des Holoproteins Neben dem Transport des APP-Holoproteins war auch die polare Sekretion des sAPP Thema dieser Arbeit. Es war gezeigt worden, dass basolaterale Sekretion des sAPP in MDCK-Zellen unabhängig vom Transport des APP-Holoproteins ist [Haass et al. 1995]. Dieses Ergebnis konnte in der vorliegenden Arbeit bestätigt und auf andere Zelllinien erweitert werden. Um die korrekte Sekretion von GFP-sAPP nachzuweisen, wurde die GFP-sAPP-Sekretion zunächst in polaren MDCK-Zellen untersucht, die stabil GFP-APP exprimierten. Da GFP am N-Terminus des APP angefügt ist, trägt auch das sezernierte APP die GFP-Markierung. GFP-sAPP konnte mittels Immunpräzipitation mit GFP-spezifischen Antikörpern lediglich im basolateralen Medium nachgewiesen werden. Somit sezernieren MDCK-Zellen GFP-sAPP in gleicher Polarität wie von Haass et al. für endogenes sAPP gezeigt wurde [Haass et al. 1995]. Experimente in GFP-APP exprimierenden LLC-PK1- und FRT-Zellen zeigten, dass auch hier die polare Sekretion des GFP-sAPP und der Transport des APPHoloproteins zwei unabhängige Prozesse sind. Polare LLC-PK1-Zellen transportierten GFP-APP zur apikalen und basolateralen Plasmamembran (siehe oben). GFP-sAPP-Sekretion aus polaren LLC-PK1-Zellen dagegen fand ausschließlich basolateral statt. In FRT-Zellen wurde GFP-sAPP im Gegensatz zu MDCK- und LLCPK1-Zellen apikal sezerniert. Kolokalisation des GFP-APP mit Transferrin-Rezeptor in FRT-Zellen deutete dagegen an, dass das Holoprotein wie in MDCK-Zellen basolateral transportiert wird. Dies ist auch zu erwarten, da FRT-Zellen AP-1B exprimieren und es auch in dieser Zelllinie basolateralen Transport vermittelt [A. Gonzalez, persönlich, ASCB 2003]. Nach diesen Ergebnissen zu urteilen, finden auch in FRT und LLC-PK1-Zellen APP-Transport und sAPP-Sekretion unabhängig voneinander statt. Basolaterale sAPP-Sekretion ist unabhängig von der Ektodomäne In MDCK-Zellen wurde zusätzlich die Sekretion eines GFP-APP untersucht, in dem der Großteil der Ektodomäne deletiert und durch GFP ersetzt wurde, die SekretaseSchnittstellen jedoch noch vorhanden waren. Durch Immunfluoreszenzanalyse wurde zunächst nachgewiesen, dass die subzelluläre Lokalisation dieser Deletionsmutante der des endogenen APP entspricht. Die Sekretion dieses stark verkürzten sAPP erfolgte wie die des Wildtyps basolateral. Dieses Ergebnis deutet an, dass die Determinante für die basolaterale Sekretion des sAPP nicht innerhalb der Ektodomäne liegt, wie in einigen älteren Publikationen angenommen wird [Haass et al. 1995, de Strooper et al. 1995]. Neuere Ergebnisse dagegen führen die polare Sekretion des sAPP auf die basolaterale Lokalisation der α-Sekretase zurück [Capell et al. 2002], was die basolaterale Sekretion der Deletionsmutante erklären könnte. sAPP-Bindung an polaren Zellen Durch Interaktion mit einem bisher unbekannten Rezeptorprotein erfüllt sAPP für verschiedene Zelltypen die Funktion eines Wachstumsfaktors [Saitoh et al., 1989, Pietrzik et al., 1998, Hoffmann et al., 2000]. Da viele Wachstumsfaktor-Rezeptoren selektiv entweder an der apikalen oder basolateralen Plasmamembran von Epithelzellen lokalisiert sind, wurden Bindungsstudien mit rekombinant exprimiertem sAPP (sAPPrec) an polaren FRT und MDCK-Zellen durchgeführt. Analyse der Bindung mit einem sAPPrec-spezifischen Antikörper zeigte, dass sAPP ausschließlich an der apikalen Plasmamembran beider Zelllinien bindet. Da die Sekretion des sAPP in FRT-Zellen ebenso apikal erfolgt, ist in dieser Zelllinie eine autokrine Regulation durch sAPP vorstellbar, was auch durch vorherige Ergebnisse angedeutet wurde [Pietrzik et al. 1998]. Für MDCK-Zellen, die sAPP basolateral sezernieren und apikal binden, muss ein anderer Regulationsmechanismus vorliegen. Es könnte sich um parakrine Regulation handeln, was jedoch noch bestätigt werden muss. Fazit: In dieser Arbeit wurde zum ersten Mal gezeigt, dass tetramere Adaptor-ProteinKomplexe eine Rolle im intrazellulären Transport von APP spielen. In diesem Zusammenhang wurde die Funktion des AP-4-Komplexes in einer Kollaboration analysiert. Es wurde gezeigt, dass AP-1A und AP-1B eine Rolle im Transport von APP spielen. Eine Funktion von AP-4 im Transport von APP ist nach den vorliegenden Ergebnissen unwahrscheinlich. Untersuchungen zur APP-Sortierung in verschiedenen Epithelzelllinien zeigten, dass die Hypothese der Unabhängigkeit von APP-Transport und sAPP-Sekretion als genereller Mechanismus angesehen werden kann. Durch Analyse der sAPP-Bindung an polaren FRT- und MDCK-Zellen wurde erstmals die polare Lokalisation des putativen sAPP-Rezeptors untersucht, was einen ersten Einblick in den Mechanismus der sAPP-vermittelten Regulation in polaren Zellen ermöglichte.
  • Alzheimer Amyloid Precursor (APP) is a precursor for both the secretory APP (sAPP), which functions as a growth factor, and the Aβ peptide which is involved in the pathogenesis of Alzheimer’s disease. APP is a ubiquitously expressed transmembrane protein and is subject to complex processing and subcellular transport. Previous studies have shown that APP695 is targeted to the basolateral side of polarised MDCK cells by a process depending on tyrosine 653 within the cytoplasmic tail. Basolateral secretion of sAPP, on the other hand, was found to be independent of this residue. The major aim of this study was to analyse polarised transport of APP in more detail. To facilitate detection of APP in the cell lines used in this study, I generated GFPAPP fusion proteins. Characterisation of the chimeric proteins by immunofluorescence and biochemical analysis demonstrated that sorting of endogenous APP and GFP-APP were similar. Using in vitro binding assays, I demonstrated that tyrosine 653 is part of an YxxΦ type sorting signal (YTSI) which interacts with AP-1B, a tetrameric adaptor protein complex involved in basolateral protein sorting. Subsequently, studies in the AP-1Bdeficient epithelial cell line LLC-PK1 provided evidence for a role of AP-1B in basolateral targeting of APP. Cell surface biotinylation and indirect detection of cell surface exposed GFP-APP by antibodies revealed that the protein was randomly present at the apical and basolateral surface in LLC-PK1 cells, presumably due to the absence of AP-1B. In vitro binding assays and colocalisation studies suggested a role for adaptor complex AP-1A in sorting of APP, as well. Interaction of AP-1A and APP did not depend on tyrosine 653, as a point mutation of this residue did not influence the interaction in the in vitro binding assays. Thus, binding of AP-1A and AP-1B to APP appears to be mediated by different sorting signals. The function of the recently discovered fourth adaptor complex, AP-4, was characterised in collaboration. Using immunofluorescence analysis, I found that AP-4 localises to subdomains of the TGN and peripheral vesicles, which are distinct from AP-1 positive structures, suggesting that the two adaptor complexes are localised in different cellular subcompartments. No evidence was found for an interaction of AP-4 and APP, neither by double labelling in immunofluorescence nor by in vitro binding assays. Thus, a role for AP-4 in the transport of APP appears unlikely. Analysis of the secretion of sAPP from FRT, MDCK and LLC-PK1 cells showed that this process is generally independent of sorting of APP holoprotein. This was demonstrated in MDCK cells by use of a GFP-APP containing a point mutation at tyrosine 653, which still results in basolateral secretion of GFP-sAPP. LLC-PK1 cells were found to release GFP-sAPP at the basolateral side, as well, but targeted the holoprotein randomly to the apical and basolateral surface. In FRT cells, GFP-sAPP secretion occurred apically, while the holoprotein resided in basolateral endosomes. How polarised secretion exactly takes place remains to be elucidated but secretion assays with a deletion mutant lacking most of the ectodomain excluded the influence of a signal within the sAPP ectodomain sequence. Binding of sAPP to polarised FRT and MDCK cells was demonstrated to occur exclusively at the apical plasma membrane, indicating that the putative receptor is displayed in a polarised manner at the surface of polarised epithelial cells. sAPP secretion and binding thus takes place at opposite cell surfaces in MDCK cells, while both processes are apical in FRT cells, suggesting that sAPP functions in different regulatory mechanisms in the two cell lines.

Download full text files

  • Dissertation_Ann_Icking.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ann IckingGND
URN:urn:nbn:de:hebis:30:3-843251
Place of publication:Frankfurt am Main
Referee:Anna Starzinski-PowitzORCiDGND, Werner Müller-Ester
Advisor:Ritva Tikkanen, Anna Starzinski-Powitz, Werner Müller-Ester
Document Type:Doctoral Thesis
Language:German
Year of Completion:2004
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/09/16
Release Date:2024/05/03
Page Number:102
HeBIS-PPN:519452526
Institutes:Medizin
Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG