Untersuchung der genomischen Instabilität des humanen MLL-Gens

  • Die Bande q23 auf Chromosom 11 ist in zahlreiche reziproke chromosomale Translokationen verwickelt. Diese sind dominant mit dem Krankheitsphänotyp einer AML, ALL und seltener mit malignen Lymphomen und myelodysplastischen Syndromen assoziiert. Mittlerweile sind fünfundachtzig cytogenetische Aberrationen der Bande 11q23 bekannt. Das auf 11q23 betroffene Gen wird als das Mixed Lineage Leukemia (MLL), Acute Lymphoblastic Leukemia (ALL-1), Human Homolog of trithorax (HRX) oder als Human Trithorax 1 (Htrx1) bezeichnet. Die häufigsten Partnergene des MLL sind AF4 (40 %), AF9 (27 %), sowie ENL, AF6, ELL und AF10 (4-7 %). Die Bruchpunkte von t(11;V) Translokationen sind nicht gleichmäßig über das gesamte, 92 kb große humane MLL-Gen verteilt, sondern liegen alle in der 8,3 kb großen Bruchpunktsregion Bpr. Auch innerhalb der Bpr ist die Verteilung der Translokationsbruchpunkte nicht homogen. Die Bruchpunkte von Patienten mit de novo Leukämien und einem Alter über einem Jahr liegen mehrheitlich in der 5’-Hälfte der Bpr, dem Subcluster I. Dagegen liegen die Bruchpunkte von Patienten mit therapiebedingten Leukämien und einem Alter unter einem Jahr überwiegend in der 3’-Hälfte der Bpr, dem Subcluster II. Neuere Forschungsergebnisse zeigten, daß DNA-Doppelstrangbrüche auf zwei verschiedenen Chromosomen eine hinreichende Voraussetzung für das Entstehen chromosomaler Translokationen sind. Aufgrund der inhomogenen Verteilung der Translokationsbruchpunkte im MLL-Gen stellte sich die Frage, ob bestimmte Regionen dieses Gens für DNA-Doppelstrangbrüche prädisponiert sind. Interessanterweise ist Subcluster II extrem sensitiv gegenüber DNA-Doppelstrangbrüchen, die durch cytotoxische Agenzien oder Apoptose-auslösende Ereignisse induziert werden können. In unserer Arbeitsgruppe konnte eine etwa 200 bp große Region lokalisiert werden, über die sich nahezu alle Etoposid-induzierten DNA-Doppelstrangbrüche verteilten. In dieser Arbeit konnte gezeigt werden, daß die Bildung von DNA-Doppelstrangbrüchen in dieser Region durch die Gabe eines Caspase-Inhibitors gehemmt werden kann. Eine Etoposid-induzierte Protein-DNA-Wechselwirkung konnte allerdings nicht nachgewiesen werden. In der Literatur fanden sich Hinweise darauf, daß Subcluster II im Gegensatz zu Subcluster I eine verstärkte Histonacetylierung aufweist. Basierend auf diesen Hinweisen sollte die Arbeitshypothese untersucht werden, ob Subcluster II einen geninternen Promotor des MLL-Gens darstellt. Die potentielle Promotorregion wurde zunächst durch Computeranalysen eingegrenzt. Mit RT-PCR Experimenten wurde anschließend der potentielle geninterne Promotor des murinen Mll-Gens in einer murinen Fibroblastenzellinie lokalisiert, die einen Transkriptionsstop und eine Polyadenylierungssequenz in Exon 4 des Mll-Gens trug. Um die am Mausmodell gewonnenen Erkenntnisse auch im humanen System zu überprüfen, wurde die geninterne Promotorregion des humanen MLL Gens vor ein Luciferasereportergen kloniert. Durch RTPCR konnte der geninterne Transkriptionsstart im Subcluster II des humanen MLL-Gens lokalisiert werden. Damit konnte zum ersten Mal gezeigt werden, daß Transkriptionsinitiation und genetische Instabilität im Subcluster II des humanen MLL-Gens kolokalisieren. Durch Deletionsmutanten wurde die Bedeutung der einzelnen Module dieser Promotorregion ermittelt. Dabei zeigte sich, daß die Anwesenheit von zwei retromobilen Elementen eine Enhancer-Funktion haben. Demgegenüber zeigte die homologe murine Sequenz, die in unserer Arbeitsgruppe gleichzeitig von S. Scharf untersucht wurde und für die keine erhöhte Anfälligkeit für DNA-Doppelstrangbrüche bekannt ist, nur eine schwache Promotoraktivität. Dies weist auf einen Zusammenhang zwischen der genetischen Instabilität von Subcluster II und der Rate geninterner Transkriptionsinitiationsprozesse hin. Das Protein, für das das Transkript des geninternen murinen Promotors kodiert, wurde mittels immunhistologischer und Western Blot Experimente nachgewiesen. Dabei konnte gezeigt werden, daß dieses Protein, wie auch das MLL-Protein, proteolytisch durch Taspase1 und daß sich ein Mini-MLL-Komplex bildet.

Download full text files

  • Dissertation_Juergen_Zech.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jürgen ZechGND
URN:urn:nbn:de:hebis:30:3-843427
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Theodor DingermannORCiDGND
Advisor:Rolf Marschalek
Document Type:Doctoral Thesis
Language:German
Year of Completion:2005
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/07/25
Release Date:2024/05/22
Page Number:114
HeBIS-PPN:519455835
Institutes:Biochemie, Chemie und Pharmazie
Medizin
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG