Signalling the mammalian mitochondrial unfolded protein response

  • Mitochondria perform essential energetic, metabolic and signalling functions within the cell. To fulfil these, the integrity of the mitochondrial proteome has to be preserved. Therefore, each mitochondrial subcompartment harbours its own system for protein quality control. However, if the capacity of mitochondrial chaperones and proteases is overloaded, mitochondrial misfolding stress (MMS) occurs. Upon this stress condition, mitochondria communicate with the nucleus to increase the transcription of nuclear encoded mitochondrial chaperones and proteases. This proteotoxic stress pathway was termed the mitochondrial unfolded protein response (UPRmt) aiming at restoring protein homeostasis. Despite being discovered over 25 years ago, the signalling molecules released by stressed mitochondria as well as the corresponding receptor and transcription factor remain poorly understood. With this study, we aimed at characterising the underlying signalling events and mechanisms of how mitochondria react to misfolded proteins. First, we aimed to establish different methods to induce MMS that triggers the transcriptional induction of mitochondrial chaperones and proteases detected by quantitative polymerase chain reaction. We were able to induce UPRmt signalling by overexpression of an aggregation-prone protein and by knock-down or inhibition of mitochondrial protein quality control components. To study the signalling in a time-resolved manner, we focused on the usage of the mitochondrial HSP90 inhibitor GTPP and the mitochondrial LONP1 protease inhibitor CDDO. Early time point RNA sequencing analysis of cells stressed with GTPP or CDDO revealed upregulated genes in response to oxidative stress. Indeed, measurements of mitochondrial superoxide with the fluorescent dye MitoSOX showed increased levels of reactive oxygen species (ROS) upon MMS induction. In contrast, there was no induction of mitochondrial chaperones and proteases when combining MMS with antioxidants. Compartment-specific targeting of the hydrogen peroxide sensor HyPer7 revealed increased ROS levels in the intermembrane space and matrix of mitochondria, followed by elevated ROS levels in the cytosol at later time points. The importance of cytosolic ROS for the signalling was supported by preventing UPRmt induction with an inhibitor blocking the outer mitochondrial membrane pore. Thus, ROS were identified as an essential UPRmt signal. To understand which cytosolic factor is modified by ROS, redox proteomics was performed. Here, reversible changes on cysteine residues of the HSP40 co-chaperone DNAJA1 were observed upon MMS. Consequently, transcriptional induction of UPRmt genes was abolished by DNAJA1 knock-down. To understand the function of DNAJA1 during UPRmt signalling, quantitative interaction proteomics upon MMS revealed an increased binding to mitochondrial proteins and its interaction partner HSP70. Immunoprecipitation confirmed a ROS-dependent interaction between HSP40 and HSP70. Increased binding to mitochondrial proteins represented a cytosolic interaction of DNAJA1 with mitochondrial precursor proteins, whose accumulation was confirmed by western blot. Moreover, a fluorescent protein targeted to mitochondria accumulated in the cytosol during GTPP treatment, confirming a reduced import efficiency upon MMS. Preventing the accumulation of precursors by a translation inhibitor or depletion of a general mitochondrial transcription factor resulted in reduced UPRmt activation. Thus, DNAJA1 is essential for UPRmt signalling, since its oxidation by mitochondrial ROS and its enhanced recruitment to mitochondrial precursors allows the integration of both MMS-induced signals. To link these findings to an increased transcription of mitochondrial chaperones and proteases, we screened for transcription factors accumulating in the nucleus upon MMS by cellular fractionation mass spectrometry. We demonstrated that specifically HSF1 accumulates in nuclei of cells stressed with GTPP or CDDO. Depletion of HSF1 by knock-down or knock-out resulted in the abrogation of the UPRmt-specific transcriptional response. HSF1 activation was visualised by nuclear accumulation on western blot, a process inhibited by ROS and precursor suppression. Moreover, DNAJA1 depletion prevented HSF1 activation. Ultimately, we proved by immunoprecipitation that the inhibitory interaction between HSF1 and HSP70 is reduced upon MMS. Thus, we conclude that MMS increases mitochondrial ROS that are released into the cytosol. In addition, the import efficiency is reduced upon MMS, resulting in the accumulation of non-imported mitochondrial precursor proteins in the cytosol. Both signals are recognised via DNAJA1 oxidation and substrate binding. The concurrent recruitment of HSP70 to DNAJA1 results in the loss of the inhibitory HSP70-HSF1 interaction. Thus, active HSF1 can migrate to the nucleus to initiate transcription of mitochondrial chaperones and proteases. These findings are in accordance with observations in yeast, where mistargeted mitochondrial proteins activate cellular stress responses. Our results highlight a surprising interconnection and dependence of the mitochondrial and the cytosolic proteostasis network, in which the UPRmt is activated by a combination of two mitochondria-specific proteotoxic stress signals.

Download full text files

Export metadata

Metadaten
Author:Ines GößnerORCiDGND
URN:urn:nbn:de:hebis:30:3-856594
DOI:https://doi.org/10.21248/gups.85659
Place of publication:Frankfurt am Main
Referee:Martin GriningerORCiDGND, Stefan Müller
Advisor:Christian Münch
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/05/23
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/04/22
Release Date:2024/05/23
Tag:Mitochondria; Proteostasis; Stress response
Page Number:225
HeBIS-PPN:518492133
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht