- Memory consolidation tends to be less robust in childhood than adulthood. However, little is known about the corresponding functional differences in the developing brain that may underlie age-related differences in retention of memories over time. This study examined system-level memory consolidation of object-scene associations after learning (immediate delay), one night of sleep (short delay), as well as two weeks (long delay) in 5-to-7-year-old children (n = 49) and in young adults (n = 39), as a reference group with mature consolidation systems. Particularly, we characterized how functional neural activation and reinstatement of neural patterns change over time, assessed by functional magnetic resonance imaging combined with representational similarity analysis (RSA). Our results showed that memory consolidation in children was less robust and strong (i.e., more forgetting) compared to young adults. Contrasting correctly retained remote versus recent memories across time delay, children showed less upregulation in posterior parahippocampal gyrus, lateral occipital cortex, and cerebellum than adults. In addition, both children and adults showed decrease in scene-specific neural reinstatement over time, indicating time-related decay of detailed differentiated memories. At the same time, we observed more generic gist-like neural reinstatement in medial-temporal and prefrontal brain regions uniquely in children, indicating qualitative difference in memory trace in children. Taken together, 5-to-7-year-old children, compared to young adults, show less robust memory consolidation, possibly due to difficulties in engaging in differentiated neural reinstatement in neocortical mnemonic regions during retrieval of remote memories, coupled with relying more on gist-like generic neural reinstatement.