LncRNA-mediated gene regulation in cardiopulmonary development, homeostasis and disease
- Precise regulation of gene expression networks is required to develop and maintain a healthy organism before and after birth and throughout adulthood. Such networks are mostly comprised of regulatory proteins, but meanwhile many long non-coding transcripts (lncRNAs) are shown to participate in these regulatory processes. The functions and mechanisms of these lncRNAs vary greatly, however they are often associated with transcriptional regulation. Three lncRNAs, namely Sweetheart RNA (Swhtr), Fetal-lethal noncoding developmental regulatory RNA / Foxf1 adjacent non-Coding developmental regulatory RNA (Fendrr) and lncFsd2, were studied in this work to demonstrate the variety of cellular and biological processes that require lncRNA-mediated fine-tuning, in regard to the cardiopulmonary system.
Swhtr was found to be expressed exclusively in cardiomyocytes and became critical for regeneration after myocardial injury. Mice lacking Swhtr did not show issues under normal conditions, but failed to undergo compensatory hypertrophic remodeling after injury, leading to increased mortality. This effect was rescued by re-expressing Swhtr, demonstrating importance of the RNA. Genes dependent on Swhtr during cardiac stress were found to likely be regulated by NKX2-5 through physical interaction with Swhtr. Fendrr was found to be expressed in lung and interacted with target promoters through its RNA:dsDNA binding domain, the FendrrBox, which was partially required for Fendrr function. Fendrr, together with activated WNT signaling, regulated fibrosis related target genes via the FendrrBox in fibroblasts. LncFsd2, an ubiquitously expressed lncRNA, showed possible interaction with the striated muscle specific Fsd2, but its exact function and regulatory role remain unclear in muscle physiology. Immunoprecipitation and subcellular fractionation experiments suggest that lncFsd2 might be involved in nuclear retention of Fsd2 mRNA, thus fine-tuning FSD2 protein expression. These investigations have shed light on the roles of these lncRNAs in stress responses, fibrosis-related gene regulation, and localization processes, advancing our understanding of cardiovascular and pulmonary maintenance, reaction to injury, and diseases. The diverse and intricate roles of these three lncRNAs highlight how they influence various cellular processes and disease states, offering avenues for exploring lncRNA functions in different biological contexts.