On the GREM approximation of TAP free energies

  • We establish both a Boltzmann-Gibbs principle and a Parisi formula for the limiting free energy of an abstract GREM (Generalized Random Energy Model) which provides an approximation of the TAP (Thouless-Anderson-Palmer) free energies associated to the Sherrington-Kirkpatrick (SK) model.

Download full text files

Export metadata

Metadaten
Author:Giulia SebastianiGND, Marius Alexander SchmidtGND
URN:urn:nbn:de:hebis:30:3-856758
URL:https://arxiv.org/abs/2401.13507v1
DOI:https://doi.org/10.48550/arXiv.2401.13507
Parent Title (German):arXiv
Publisher:arXiv
Document Type:Preprint
Language:English
Date of Publication (online):2024/01/24
Date of first Publication:2024/01/24
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2024/06/13
Issue:2401.13507 Version 1
Edition:Version 1
Page Number:17
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Classification:60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Gxx Stochastic processes / 60G70 Extreme value theory; extremal processes
60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Jxx Markov processes / 60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
82-XX STATISTICAL MECHANICS, STRUCTURE OF MATTER / 82Bxx Equilibrium statistical mechanics / 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.)
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0