Generative AI for scalable feedback to multimodal exercises
- Detailed feedback on exercises helps learners become proficient but is time-consuming for educators and, thus, hardly scalable. This manuscript evaluates how well Generative Artificial Intelligence (AI) provides automated feedback on complex multimodal exercises requiring coding, statistics, and economic reasoning. Besides providing this technology through an easily accessible web application, this article evaluates the technology’s performance by comparing the quantitative feedback (i.e., points achieved) from Generative AI models with human expert feedback for 4,349 solutions to marketing analytics exercises. The results show that automated feedback produced by Generative AI (GPT-4) provides almost unbiased evaluations while correlating highly with (r = 0.94) and deviating only 6 % from human evaluations. GPT-4 performs best among seven Generative AI models, albeit at the highest cost. Comparing the models’ performance with costs shows that GPT-4, Mistral Large, Claude 3 Opus, and Gemini 1.0 Pro dominate three other Generative AI models (Claude 3 Sonnet, GPT-3.5, and Gemini 1.5 Pro). Expert assessment of the qualitative feedback (i.e., the AI’s textual response) indicates that it is mostly correct, sufficient, and appropriate for learners. A survey of marketing analytics learners shows that they highly recommend the app and its Generative AI feedback. An advantage of the app is its subject-agnosticism—it does not require any subject- or exercise-specific training. Thus, it is immediately usable for new exercises in marketing analytics and other subjects.
Author: | Lukas JürgensmeierORCiD, Bernd SkieraORCiDGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-856956 |
DOI: | https://doi.org/10.1016/j.ijresmar.2024.05.005 |
ISSN: | 0167-8116 |
Parent Title (English): | International journal of research in marketing |
Publisher: | Elsevier |
Place of publication: | Amsterdam |
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2024/05/22 |
Date of first Publication: | 2024/05/22 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Release Date: | 2024/06/11 |
Tag: | Automated Feedback; Education; Generative AI; Learning; Marketing Analytics |
Volume: | 2024 |
Issue: | In Press, Corrected Proof |
Page Number: | 47 |
HeBIS-PPN: | 520871391 |
Institutes: | Wirtschaftswissenschaften / Wirtschaftswissenschaften |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft | |
Sammlungen: | Universitätspublikationen |
Licence (German): | Creative Commons - CC BY - Namensnennung 4.0 International |