- Clb2 is a conserved mitotic B-type cyclin, the levels of which are finely controlled to drive progression through the cell cycle. While it is known that CLB2 transcription and Clb2 protein degradation are important for precise control of its expression, it remains unclear whether the synthesis of Clb2 is also regulated. To address whether and how Clb2 expression levels respond to cell growth changes and adapt cell cycle progression, we combined single-cell and single-molecule imaging methods to measure CLB2 mRNA and protein expression throughout the Saccharomyces cerevisiae cell cycle. We found that the CLB2 mRNA was efficiently localized to the yeast bud as soon as this compartment was formed, but strikingly the Clb2 protein accumulated in the mother nucleus. The CLB2 mRNA localization in the yeast bud by the She2-3 complex did not control protein localization but rather promoted CLB2 translation. Moreover, CLB2 mRNA bud localization and protein synthesis were coupled and dependent on a single secondary structure -a ZIP code-located in the coding sequence. In a CLB2 ZIP code mutant, mRNA localization was impaired and Clb2 protein synthesis decreased, resulting in changes in cell cycle distribution and increased size of daughter cells at birth. Finally, while in WT cells the Clb2 protein concentration followed bud growth, this relationship was impaired in the ZIP code mutant. We propose that S. cerevisiae couples the control of CLB2 mRNA bud localization and protein synthesis to coordinate cell growth and cell cycle progression. This mechanism extends our knowledge of CLB2 expression regulation, and constitutes a novel function for mRNA localization.