Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning

  • The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.

Download full text files

Export metadata

Metadaten
Author:Pablo Acera MateosORCiD, You ZhouORCiDGND, Katharina ZarnackORCiDGND, Eduardo Angel Eyras JiménezORCiDGND
URN:urn:nbn:de:hebis:30:3-869612
DOI:https://doi.org/10.1093/bib/bbad163
ISSN:1477-4054
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/37139545
Parent Title (English):Briefings in bioinformatics
Publisher:Oxford University Press
Place of publication:Oxford [u.a.]
Document Type:Article
Language:English
Date of Publication (online):2023/05/03
Date of first Publication:2023/05/03
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/09/05
Volume:24
Issue:3
Page Number:14
First Page:1
Last Page:14
Institutes:Fachübergreifende Einrichtungen / Buchmann Institut für Molekulare Lebenswissenschaften (BMLS)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International