Bradykinin B2 receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses

  • Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection. Author Summary: Antibodies and IFN-gamma-producing effector T cells are essential for the immune control of infection by Trypanosoma cruzi, the intracellular protozoa that causes human Chagas disease. Despite the potency of anti-parasite immunity, the parasites are not cleared from their intracellular niches. Instead, a low grade chronic infection prevails, provoking severe immunopathology in the myocardium. Although it is well established that innate sentinel cells sense T. cruzi through receptors for microbial structures, such as Toll-like receptors, it remained unclear whether endogenous inflammatory signals also contribute to the development of adaptive immunity. The present study was motivated by awareness that T. cruzi trypomastigotes (extracellular infective forms) are equipped with proteases that liberate the pro-inflammatory bradykinin peptide from an internal segment of kininogens. Here we demonstrate that splenic dendritic cells (DCs), the antigen-presenting cells that coordinate the adaptive branch of immunity in lymphoid tissues, are potently activated via G-protein-coupled bradykinin B2 receptors (B2R). Analysis of the outcome of infection in B2R-knockout mice revealed that the mutant mice developed a typical susceptible phenotype, owing to impaired development of IFN-gamma-producing effector T cells. Notably, the immune dysfunction of B2R-knockout mice was corrected upon cell transfer of wild-type DCs, thus linking development of protective T cells to DCs' sensing of endogenous danger signals (kinins) released by trypomastigotes.
Metadaten
Author:Ana Carolina Monteiro, Verônica Schmitz, Alexandre Morrot, Luciana Barros de Arruda, Fnu Nagajyothi, Alessandra Granato, João B. Pesquero, Werner Müller-EsterlORCiDGND, Herbert B. Tanowitz, Julio Scharfstein
URN:urn:nbn:de:hebis:30-64156
DOI:https://doi.org/10.1371/journal.ppat.0030185
ISSN:1553-7374
Parent Title (English):PLoS pathogens
Publisher:PLoS
Place of publication:Lawrence, Kan.
Document Type:Article
Language:English
Date of Publication (online):2007/11/30
Date of first Publication:2007/11/30
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2009/04/24
Volume:3
Issue:(11): e185
Page Number:15
First Page:1730
Last Page:1744
Note:
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
HeBIS-PPN:212153528
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht