TY - JOUR A1 - Hoogakker, Babette A. A. A1 - Smith, Robin S. A1 - Singarayer, Joy A1 - Marchant, Robert A1 - Prentice, I. Colin A1 - Allen, Judy R. M. A1 - Anderson, R. Scott A1 - Bhagwat, Shonil A. A1 - Behling, Hermann A1 - Borisova, Olga A1 - Bush, Mark B. A1 - Correa-Metrio, Alexander A1 - De Vernal, Anne A1 - Finch, Jemma M. A1 - Fréchette, Bianca A1 - Lozano-García, Socorro A1 - Gosling, William D. A1 - Granoszewski, Wojciech A1 - Grimm, Eric C. A1 - Grüger, Eberhard A1 - Hanselman, Jennifer A1 - Harrison, Sandy P. A1 - Hill, Trevor R. A1 - Huntley, Brian A1 - Jimenez-Moreno, Gonzalo A1 - Kershaw, Arnold Peter A1 - Ledru, Marie-Pierre A1 - Magri, Donatella A1 - McKenzie, Merna A1 - Müller, Ulrich A1 - Nakagawa, Takeshi A1 - Novenko, Elena A1 - Penny, Daniel A1 - Sadori, Laura A1 - Scott, Louis A1 - Stevenson, Janelle A1 - Valdes, Paul J. A1 - Vandergoes, Marcus A1 - Velichko, Andrey A1 - Whitlock, Cathy A1 - Tzedakis, Chronis T1 - Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13 C T2 - Climate of the past discussions N2 - A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 kaBP, and between 60 and 65 kaBP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ 13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ 13C based on modelled land carbon storage, and palaeo-archives of ocean δ 13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ 13 C changes. Y1 - 2015 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/42016 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-420167 UR - http://www.clim-past-discuss.net/11/1031/2015 SN - 1814-9359 SN - 1814-9340 N1 - © Author(s) 2015. CC Attribution 3.0 License. VL - 11 SP - 1031 EP - 1091 PB - European Geosciences Union CY - Katlenburg-Lindau ER -