TY - THES A1 - Glesaaen, Jonas Rylund T1 - Heavy quark QCD at finite temperature and density using an effective theory N2 - In this thesis we explore the characteristics of strongly interacting matter, described by Quantum Chromodynamics (QCD). In particular, we investigate the properties of QCD at extreme densities, a region yet to be explored by first principle methods. We base the study on lattice gauge theory with Wilson fermions in the strong coupling, heavy quark regime. We expand the lattice action around this limit, and carry out analytic integrals over the gauge links to obtain an effective, dimensionally reduced, theory of Polyakov loop interactions. The 3D effective theory suffers only from a mild sign problem, and we briefly outline how it can be simulated using either Monte Carlo techniques with reweighting, or the Complex Langevin flow. We then continue to the main topic of the thesis, namely the analytic treatment of the effective theory. We introduce the linked cluster expansion, a method ideal for studying thermodynamic expansions. The complex nature of the effective theory action requires the development of a generalisation of the linked cluster expansion. We find a mapping between generalised linked cluster expansion and our effective theory, and use this to compute the thermodynamic quantities. Lastly, various resummation techniques are explored, and a chain resummation is implemented on the level of the effective theory itself. The resummed effective theory describes not only nearest neighbour, next to nearest neighbour, and so on, interactions, but couplings at all distances, making it well suited for describing macroscopic effects. We compute the equation of state for cold and dense heavy QCD, and find a correspondence with that of non-relativistic free fermions, indicating a shift of the dynamics in the continuum. We conclude this thesis by presenting two possible extensions to new physics using the techniques outlined within. First is the application of the effective theory in the large-$N_c$ limit, of particular interest to the study of conformal field theory. Second is the computation of analytic Yang Lee zeros, which can be applied in the search for real phase transitions. KW - lattice KW - quantum chromodynamics KW - phase transitions Y1 - 2016 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44043 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-440431 CY - Frankfurt am Main ER -