TY - THES A1 - Gallego Flores, Tatiana T1 - A molecular atlas of cell types in the lizard brain : understanding vertebrate diencephalon evolution N2 - How the brain evolved remains a mystery. The goal of this thesis is to understand the fundamental processes that are behind the evolutionary history of the brain. Amniotes appeared 320 million years ago with the transition from water to land. This early group bifurcated into sauropsids (reptiles and birds) and synapsids (mammals). Amniote brains evolved separately and display obvious structural and functional differences. Although those differences reflect brain diversification, all amniote brains share a common ancestor and their brains show multiple derived similarities: equivalent structures, networks, circuits and cell types have been preserved during millions of years. Finding these differences and similarities will help us understand brain historical evolution and function. Studying brain evolution can be approached from various levels, including brain structure, circuits, cell types, and genes. We propose a focus on cell types for a more comprehensive understanding of brain evolution. Neurons are the basic building blocks and the most diverse cell types in the brain. Their evolution reflects changes in the developmental processes that produce them, which in turn may shape the neural circuits they belong to. However, there is currently a lack of a unified criteria for studying the homology of connectivity and development between neurons. A neuron’s transcriptome is a molecular representation of its identity, connectivity, and developmental/evolutionary history. Hence the comparison of neuronal transcriptomes within and across species is a new and transformative development in the study of brain evolution. As an alternative, comparing neuronal transcriptomes across different species can provide insights into the evolution of the brain. We propose that comparing transcriptomes can be a way to fill this gap and unify these criteria. In previous studies, published in Science (Tosches et al., 2018) and Nature (Norimoto et al., 2020), we leveraged scRNAseq in reptiles to re-evaluate the origins and evolution of the mammalian cerebral cortex and claustrum. Motivated by the success of this approach, in this thesis we have now expanded single-cell profiling to the entire brain of a lizard species, the Australian dragon Pogona vitticeps, with a special focus in thalamus and prethalamus of. This approach allowed us to study the evolution of neuron types in amniotes. Therefore, we aimed to build a multilevel atlas of the lizard brain based on histology and transcriptomic and compare it to an equal mouse dataset (Zeisel et al., 2018). Our atlas reveals a general structure that is consistent with that for other amniote brains, allowing us to make a direct comparison between lizard and mouse, despite their evolutionary divergence 320 million years ago. Through our analysis of the transcriptomes present in various neuron types, we have uncovered a core of conserved classes and discovered a fascinating dichotomy of new and conserved neuron types throughout the brain. This research challenges the traditional notion that certain brain regions are more conserved than others. Our research also has uncovered the evolutionary history of the lizard thalamus and prethalamus by comparing them to homologous brain regions of the mouse. This pioneering research sheds new light on our understanding of the evolutionary history of the lizard brain. We propose a new classification of the lizard thalamic nuclei based on transcriptomics. Our research revealed that the thalamic neuron types in lizards can be grouped into two large, conserved categories from the medial to lateral thalamus. These categories are encoded by a common set of effector genes, linking theories based on connectivity and molecular studies of these areas. In our data we have seen that there is a conservation of the medial-lateral transcriptomic axis in mouse and lizard, this conservation was most likely already present in the common ancestor. Although there is a shared medial-lateral axis, a deeper study of the thalamic cell types has allowed us to see the existence of a partial diversification of the thalamic population, specifically in the sensory-related lateral thalamus; in opposition, the medial thalamic nuclei neuron-types have been preserved. On the other hand, the comparison with the mammalian prethalamus allowed us to confirm that the lizard ventromedial thalamic neuron types are homologous to mouse reticular thalamic neuron types (Díaz et al., 1994), even if they do not express the classical Reticular thalamic nucleus (RTn) marker PV/pvalb. We also discovered that there has been a simplification in the mammalian prethalamic neuron types in favor of an increase in the number of Interneurons (IN) types within their thalamus. We suggest that the loss of GABAergic neuronal types in the mammalian prethalamus is linked to the need for a more efficient control of the thalamo-pallial communication in mammals, while in lizards, where thalamo-pallial communication is probably simpler, the diversity prethalamus presents a higher diversity. Y1 - 2024 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/83177 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-831771 CY - Frankfurt am Main ER -