TY - THES A1 - Latsch, Silvia T1 - Einsatz der isothermen Wärmeleitungsmikrokalorimetrie zur Stabilitätsbeurteilung von Transdermalen Therapeutischen Systemen (TTS) N2 - Transdermale Therapeutische Systeme (TTS) sind Arzneiformen, die über einen längeren Zeitraum eine kontrollierte Arzneistoffabgabe durch die Haut ermöglichen. Um ausreichende Permeationsraten zu erreichen, sind häufig hohe Arzneistoffkonzentrationen im Reservoir notwendig. In TTS, deren Arzneistoffkonzentration über der Sättigungskonzentration der Matrix liegt, neigen die Wirkstoffe dazu auszukristallisieren. Die Kristallisation stellt ein wichtiges Stabilitätsproblem bei der Entwicklung solcher Systeme dar, da die Bioverfügbarkeit negativ beeinflusst werden kann. Diese Studie zeigt, dass Kristallisationsprozesse in TTS mithilfe der isothermen Wärmeleitungsmikrokalorimetrie über eine Messzeit von 7 Tagen mit hoher Empfindlichkeit erfasst werden können, denn die Kristallisation stellt einen exothermen Prozess dar. Die mikrokalorimetrische Messkurve zeigte sowohl bei Placebo- als auch bei wirkstoffhaltigen Zubereitungen einen starken initialen, exothermen Wärmefluss, der über einige Tage langsam abfiel bis ein konstantes Wärmeflussplateau erreicht wurde. Der hohe initiale Wärmefluss entstand durch das Ausstanzen der Laminate und die damit verbundene mechanische Beanspruchung. Die Kristallisation wurde von den Stanzrändern ausgehend initiiert und war damit an den Schnittkanten auch stärker ausgeprägt als im Inneren der Laminate. An den Schnittstellen des TTS waren mikroskopisch wesentlich mehr Kristalle nachweisbar als in den nicht mechanisch beanspruchten Bereichen. Die messbare Arzneistoff-immanente Wärmemenge stieg mit erhöhtem Arzneistoffgehalt an, war aber über 7 Tage bei den E2-haltigen und NEA-haltigen TTS-Laminaten nicht proportional zum Arzneistoffgehalt, da die Kristallisation nach dieser Messzeit nicht beendet war. Dieses Ergebnis konnte durch die mit steigender Übersättigung beschleunigte Kristallisation erklärt werden, die für alle untersuchten Messreihen beobachtet wurde. Je höher die Arzneistoffkonzentration in den Laminaten war, desto stärker war auch die Triebkraft für Kristallisationsvorgänge. Das Kristallisationsende war rascher erreicht. War die Kristallisationsgeschwindigkeit dagegen über einen gewissen Konzentrationsbereich konstant oder war der Kristallisationsprozess während der Messzeit bereits beendet, so stieg die Arzneistoff-immanente Wärmemenge proportional zur erhöhten Arzneistoffkonzentration. Eine konstante Kristallisationsgeschwindigkeit wurde für NEA im Bereich von 4 bis 10 % beobachtet. Bei höherer Übersättigung verlief der Kristallisationsprozess allerdings ebenfalls beschleunigt. Die Kristallisationsgeschwindigkeitskonstante sowie der Avrami-Exponent als Parameter für den Kristallisationsmechanismus konnten anhand der mikrokalorimetrischen Daten berechnet werden, ebenso wie die Kristallisationsenthalpien in Höhe von -23,3 ± 1,2 kJ/mol für E2-hemihydrat, -22,8 ± 2,6 kJ/mol für NEA sowie -7,9 ± 0,95 kJ/mol für die 1:3- Mischung. Alle Kristallisationsvorgänge waren durch die hohe Viskosität der Matrix diffusionskontrolliert und zeigten ein eindimensionales Kristallwachstum. Bei der Mikrokalorimetrie handelt sich um eine unspezifische Methode, bei der der Ursprung der Wärmeeffekte durch zusätzliche Methoden aufgeklärt werden muss. Als weitere Untersuchungsmethoden bei der Kristallisation in transdermalen Systemen boten sich die Polarisationsmikroskopie und die Pulverröntgenbeugung an. Die DSC war ungeeignet. Im Vergleich zur Mikrokalorimetrie war die polarisationsmikroskopische Untersuchung von Kristallisationsprozessen jedoch wesentlich zeitaufwendiger, wobei sich die Empfindlichkeit als höher erwiesen hat. Die Mikrokalorimetrie detektierte im Vergleich zur Mikroskopie erst eine Kristallmenge von ungefähr 0,5 % zuverlässig. Die Pulverröntgenbeugung stellte im Vergleich zu Mikroskopie und Mikrokalorimetrie eine weniger empfindliche analytische Methode für die Erkennung von kristallinem organischen Material in einer polymeren amorphen Matrix dar. Während kleine Kristalle in den Polymerfilmen bereits mit bloßem Auge zu sehen waren, traten zum Teil keine Reflexe im Pulverdiagramm auf. Die Detektionsgrenze lag im Vergleich zur Mikroskopie bei ungefähr 1 bis 1,5 % Kristallen in der polymeren Umgebung. Dagegen ist die Pulverröntgenbeugung für verschiedene Kristalltypen sehr spezifisch. Sie erlaubt die Aufklärung von Strukturen sowie eine quantitative Auswertung der Kristallmengen in Mischungen, sofern die Kristalltypen bekannt sind. Mithilfe der Polarisationsmikroskopie und Pulverröntgenbeugung wurden die Kristallstrukturen der Arzneistoffe in der polymeren Matrix der TTS untersucht. Für Systeme, die nur einen der Arzneistoffe enthielten, wurde eine unveränderte Kristallisation in der Matrix in Form von E2-hemihydrat bzw. NEA beobachtet. Die Kombination von E2-hemihydrat und NEA veränderte die Kristallstruktur der gebildeten Kristalle im Vergleich zu den reinen Arzneistoffen und führte zur Ausbildung einer neuen Kristallstruktur in der Matrix, die sich in den Reflexlagen auch von der aus Ethylacetat kristallisierten unterschied. Sogar geringe E2-Konzentrationen führten zu einer deutlichen Veränderung der Kristallform und des Röntgenbeugungsmusters der NEA-Kristalle. Außerdem wurde der Kristallisationsprozess durch die Kombination der Hormone stark beschleunigt. Bei der neuen Kristallform handelte es sich um eine thermodynamisch weniger stabile Struktur, da die Kristallisationsenthalpie geringer war, allerdings war die Kristallisation kinetisch bevorzugt. Trotz der Unterschiede in der Empfindlichkeit der Methoden, die zur Bestimmung der Sättigungslöslichkeit angewendet wurden, stehen die erhaltenen Ergebnisse entsprechend den Detektionsgrenzen in guter Übereinstimmung, wobei es sich bei den ermittelten Werten von 1,5 % für E2-hemihydrat und 4 % für NEA unter Umgebungsbedingungen um die Sättigungslöslichkeit unter Kristallisationsbedingungen und nicht um die wahre Sättigungslöslichkeit handelt. Hohe Feuchtigkeit in der polymeren Matrix fördert die E2-hemihydrat- sowie NEA-Kristallisation durch die geringe Wasserlöslichkeit der Steroidhormone. Die Trocknungsbedingungen konnten die physikalische Stabilität der Pflaster stark beeinflussen, was eventuell auch durch die Ausbildung einer besser löslichen, wasserfreien Kristallform des Estradiols begründet sein könnte. Die Vorbehandlung der Laminate bei 80°C scheint eine gute Möglichkeit zu sein, die TTS vor Kristallisationsprozessen zu schützen, wobei bei der Lagerdauer ein Kompromiss zwischen der physikalischen Stabilisierung und der chemischen Zersetzung gefunden werden muss. Zusammenfassend wurde festgestellt, dass es sich bei der Mikrokalorimetrie um eine zeitsparende und effektive Methode für die Beurteilung einer Vorbehandlung bei 80°C sowie des Einflusses von verschiedenen Hilfsstoffen auf den Kristallisationsprozess der Arzneistoffe im TTS handelt. Die Mikrokalorimetrie ermöglichte dabei innerhalb von 7 Tagen die Klassifikation verschiedener Zusatzstoffe nach deren Effizienz, die Kristallisation in den Pflastern zu initiieren. Dagegen sind häufig viele Monate nötig, um ähnlich zuverlässige Ergebnisse mit der Polarisationsmikroskopie bzw. der Pulverröntgenbeugung zu erhalten. Die Mikrokalorimetrie stellt demnach eine interessante Methode für ein Hilfsstoffscreening und die Optimierung von Rezepturen dar. Y1 - 2003 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/5251 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-0000003556 ER -