TY - GEN A1 - Titze, Jasmin T1 - Untersuchung des Elektronentransfers in p-D2-Stößen : Der Doppelspaltversuch mit einem diatomaren Molekül N2 - Im Rahmen dieser Arbeit wurden Protonen an im Raum ausgerichteten D2-Molekülen gestreut. Ziel war es nach möglichen Interferenzstrukturen in der Streuwinkelverteilung der Projektile zu suchen. Solche Interferenzstrukturen sind durch die Theorie vorhergesagt. Sie sind in Analogie zur Beugung am Doppelspalt ein Ergebnis der kohärenten Streuung des Projektils an den beiden Kernen des D2-Moleküls. Für den Reaktionskanal des Elektroneneinfangs mit gleichzeitiger Dissoziation des Moleküls mit einer Energie zwischen 4 und 7eV zeigen die experimentellen Daten tatsächlich ein Minimum an etwa der vorhergesagten Stelle. Dieses Minimum variiert mit der Orientierung der Molekülachse allerdings nicht ganz, wie aufgrund der Analogie zum Doppelspalt zu erwarten ist. Für den gleichzeitig im Experiment beobachteten Kanal der Transferionisation, der zu einer Fragmentenergie von etwa 9eV führt, wurden im Experiment keine Modulation der Streuverteilung beobachtet. Der beobachtete Reaktionskanal der Dissoziation wirft weitere Fragen auf, die über das einfache Doppelspalt-Bild hinausgehen. So kann das dissoziierende D2-Ion sowohl in einem geraden als auch in einem ungeraden Zustand seiner elektronischen Wellenfunktion zurückbleiben. Diese Symmetrie der elektronischen Wellenfunktion beeinflusst ebenfalls die Phase der gestreuten Welle. Eine zuverlässige Vorhersage des zu erwartenden Kontrastes des Interferenzmusters hängt von der relativen Stärke der Anregung in den geraden und ungeraden Zustand ab. Dieser Effekt ist bisher nicht in den theoretischen Modellen berücksichtigt. Diese Frage kann aber auch durch weitere Experimente geklärt werden. Im Rahmen einer anderen Diplomarbeit [Wim04] wurde ein sehr ähnliches Experiment vermessen: Ein einfach geladenes Wasserstoffmolekülion wird beschleunigt, stößt mit einem nahezu ruhenden Atom und fängt dabei ein Elektron ein. Durch den Elektroneneinfang geht das Molekül u. a. in einen 1ssu-Zustand über, der zur Dissoziation führt. Genau wie in diesem Experiment auch, kann dadurch die Molekülachse festgehalten werden. Betrachtet man in der Auswertung die Bewegung beider Teilchen in inverser Kinematik, d.h. lässt man das neutrale Atom auf das Molekül zufliegen, so zeigen sich in der Impulsverteilung des Rückstoßions (Atomions) Minima und Maxima, deren Position sich mit der Drehung des Moleküls ändert. Dies bestätigt eigentlich die Existenz von Interferenzen. Nur wird hier, wie bereits gesagt, die inverse Kinematik betrachtet, zudem vermisst man eigentlich den umgekehrten Übergang vom 1ssg-Zustand des Molekülions in den 1ssu-Zustand des Moleküls. Um theoretische Berechnungen jedoch direkt zu bestätigen, ist es durchaus erstrebenswert, die Kinematik wie hier in dem hier vorgestellten Experiment zu vermessen. Aus diesem Grund werden in nächster Zeit noch weitere Messungen vorgenommen, in denen mit gleichem Aufbau, jedoch mit einer niedrigeren Projektilenergie (10 keV - 25 keV), die gleiche Reaktion untersucht wird. Mit der niedrigeren Energie des Projektils soll eine sehr viel bessere Streuwinkelauflösung erreicht werden, so dass sie die Beobachtung möglicher Interferenzen definitiv nicht mehr begrenzt. Dadurch können zum einen die Ergebnisse dieser Arbeit auf ihre Richtigkeit überprüft werden. Wenn tatsächlich Interferenzstrukturen zu beobachten sind, zeigen zum anderen eventuelle Veränderungen, ob eine Analogie zum Doppelspalt gerechtfertigt ist. Y1 - 2004 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/3462 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-19524 UR - http://hsbpc1.ikf.physik.uni-frankfurt.de/web/publications/diplom_doktor/ EP - 100 ER -