TY - THES A1 - Mertens, Martina T1 - Schwefel-Bestimmung in Proteinen und Enzymen mit der Totalreflexions-Röntgenfluoreszenzanalyse (TXRF) : Möglichkeiten und Grenzen N2 - Während der letzten Jahrzehnte hat sich die Totalreflexions-Röntgenfluoreszenzanalyse (TXRF) als eine tragende Methode in der Elementanalytik etabliert. Sie ist eine universelle, auf vielen Gebieten einsetzbare, ökonomische Multielementmethode zur Mikro- und Spurenanalyse. Die Vorteile der TXRF mit ihrer hohenEmpfindlichkeit kombiniert mit einer einfachen Quantifizierung und einem geringen Probenverbrauch prädestinieren sie für Elementbestimmungen in verschiedenen biologischen Matrices - besonders auf dem Gebiet der Protein- und Enzymanalytik. Das Potential der TXRF für die Bestimmung von Übergangsmetallen in diesenMatrices wurde schon in der Literatur beschrieben. Eine bedeutende Rolle kommt hier auch der Analyse leichter Elemente zu, insbesondere der des Schwefels. Als Bestandteil der beiden Aminosäuren Cystein und Methionin erlaubt die quantitative Bestimmung des Schwefelgehaltes eine zur Metall-Cofaktoren-Bestimmung einfache und simultane Bestimmung der Enzym- oder Proteinkonzentration. Die Evaluation dieses Verfahrens mit seinen Möglichkeiten und Grenzen für die TXRF, sowie die Weiterentwicklung von Anwendungsgebieten auf diesem Gebiet waren die vorrangigen Ziele dieser Arbeit. Zuvor erfolgte eine Überprüfung der für die quantitative Auswertung notwendigen und wichtigen relativen Empfindlichkeitsfaktoren (Kalibrierfaktoren). Für die beiden untersuchten leichteren Elemente Schwefel und Phosphor ließen sich im Gegensatz zu den höheren Elementen Abweichungen von > ± 10 % zu den in der Spektrometer-Software bereits vorinstallierten Faktoren feststellen. Die Betrachtung der Matrix- und Konzentrationsabhängigkeit des relativen Empfindlichkeitsfaktors von Schwefel zeigte eine starke Matrixabhängigkeit des Faktors bei höheren Konzentrationen. Hier spielen vorrangig Absorptionseffekte der induzierten Fluoreszenzstrahlung des Schwefels in den unterschiedlich massiven Rückständen der untersuchten Verbindungen Al2(SO4)3, MgSO4 und Na2SO4 eine entscheidende Rolle. Im Zuge der Probenvorbereitung für die Analyse der Protein- und Enzymproben erwies sich die Trocknung an Luft bei Raumtemperatur als eine gut geeignete Methode im Vergleich zu herkömmlichen Verfahren (Trocknung unter Wärmezufuhr). Bei letzterem Verfahren besteht die Gefahr möglicher Elementverluste von flüchtigen Verbindungen z. B. beim Vorhandensein sulfidischer Bestandteile. Der Einfluss der Matrixbestandteile (Puffer/bio-organische Matrix der Enzyme selbst) und ihre systematischen Zusammenhänge auf die ausgebildeten Trocknungsrückstände zeigten sich deutlich in den zur Evaluation der Schwefelbestimmung durchgeführten Konzentrationsreihen mit schwefelhaltigen anorganischen Standardlösungen. Bei den beiden untersuchten Enzymen Diisopropylfluorophosphatase (DFPase) undCytochrom c Oxidase wurden über die durchgeführten Konzentrationsbereiche sehr gute Wiederfindungen dokumentiert. Bei der Cytochrom c Oxidase trägt vor allem der im Vergleich zur DFPase deutlich höhere Anteil an Pufferkomponenten zur Ausbildung massiverer Trocknungsrückstände (max. 5 μm Dicke) bei. Dennoch traten erst bei der NADH:Q Oxidoreduktase (Komplex I) deutliche, reproduzierbare Minderbefunde bei der Schwefelbestimmung im Verlauf der Konzentrationsreihe auf. Anhand der topologischen Untersuchungen ließen sich hier für die Minderbefunde Schichtdickeneinflüsse und eine damit verbundene Absorption der emittierten Fluoreszenzstrahlung verantwortlich machen. Der Einsatz von sogenannten Filmbildnern zur Minimierung der Schichtdicken von Trocknungsrückständen und der damit verbundenen besseren Elementwiederfindungen brachte dagegen keine deutlichen und reproduzierbaren Verbesserungen, insbesondere nicht für den Schwefel. Eine Erhöhung der Anregungseffizienz durch die Verwendung einer Cr-Kα-Strahlung zeigte in den untersuchten Proben (wässrige Matrix/Enzymmatrix: DFPase) keine deutlichen Vorteile in der Bestimmung des leichten Elementes. Die beiden, in herkömmlichen Spektrometern zur Verfügung stehenden, AnregungsmodenW-Lα und Mo-Kα, sind für die Anlayse von Enzymproben und einer vergleichenden Bestimmung der Enzymkonzentration gut geeignet. Dies zeigten auch Vergleiche mit den biochemisch bestimmten Protein- bzw. Enzymkonzentrationen. Kritische Schichtdicken im Rahmen von Schwefel-Bestimmungen wurden für die verwendeten Anregungsmoden auf etwa 20 μm (Mo-Kα), 3 μm (W-Lα) und rund 2 μm (Cr-Kα) kalkuliert. Eine Beeinträchtigung der Zuverlässigkeit der TXRF-Messungen für die höheren Elemente durch die Matrixbestandteile konnte nicht festgestellt werden. Somit wird in den meisten Fällen die einfache Probenpräparation auf hydrophoben oder hydrophilen (siliconisierten/unsiliconisierten) Probenträgern, ohne die Notwendigkeit eines Verfahrens zur vorherigen Matrixabtrennung, möglich sein. Jedoch muss bei allen künftig zu untersuchenden Protein- oder Enzymproben mit hohen Matrixanteilen mit dem Auftreten von Schichtdickeneffekten und damit verbundenen Absorptionseffekten von leichten Elementen (Schwefel, Phosphor) gerechnet werden. Die in der Arbeit vorgestellten, unterschiedlichen Projekte zeigen deutlich das Potential der TXRF als eine Standardmethode auf diesem Anwendungsgebiet. KW - Cytochromoxidase KW - Schwefel KW - Chemische Analyse KW - Totalreflexionsröntgenfluoreszenzanalyse KW - Diisopropylfluorophosphatase KW - NADH-Dehydrogenase Y1 - 2001 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/1938 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-34811 SP - 1 EP - 111 CY - Frankfurt am Main ER -