TY - GEN A1 - Kreidi, Katharina T1 - Photodoppelionisation von H2 - eine Analogie zum Doppelspalt N2 - Das Ziel dieser Arbeit war die Untersuchung der Photodoppelionisation des H2-Moleküls mit zirkular polarisiertem Licht. Dabei sollte nach Anzeichen von Doppelspaltinterferenzen in den Photoelektronenwinkelverteilungen gesucht werden. Die Erscheinungen im klassischen Doppelspaltexperiment basieren auf der Interferenz der nach dem Huygenschen Prinzip gebeugten ebenen Wellen. In Analogie dazu stellen nun im molekularen System die beiden Kerne die Emissionszentren der Elektronenwelle dar. Die Interferenzerscheinung wird dabei durch die von beiden Kernen gleichzeitig emittierte Elekltronenwelle hervorgerufen. Die Photodoppelionisation des H2-Moleküls wurde mit einer Photonenenergie von 240 eV durchgeführt, um eine Wellenlänge der ionisierten Elektronen in der Größenordnung des Gleichgewichtsabstands der Kerne von 1.4 a.u. zu erreichen. Zur Erzeugung des Interferenzeffektes hätte eigentlich die Einfachionisation des Moleküls ausgereicht, da die Welle eines Elektrons gleichzeitig von beiden Protonen ausläuft. Es wurde trotzdem die Doppelionisation durchgeführt, da so die Ionen in Koinzidenz gemessen werden können und die Impulserhaltung in der Coulomb-Explosion des Moleküls zur Identifikation von H2-Ionisationsereignissen verwendet werden kann. Weitere Vorteile sind die Beobachtung der Elektronenkorrelation für verschiedene Energieaufteilungen der Elektronen, sowie die Möglichkeit der Bestimmung des internuklearen Abstandes aus der kinetischen Energie der Ionen (KER). Zunächst wurde die Winkelverteilung der Photoelektronen für eine extrem asymmetrische Energieaufteilung untersucht. Die Lage und Größe der Interferenzmaxima und -minima in der Elektronenwinkelverteilung wurde dann mit der im klassischen Doppelspaltexperiment auftretenden Interferenzstruktur verglichen. Es konnte gezeigt werden, dass das Interferenzminimum sich wie im Falle des klassischen Doppelspaltes unter einem Winkel von ca. 52° relativ zur Spalt- bzw. Molekülachse befindet. Die Größenverhältnisse von Haupt- zu Nebenmaximum wichen dagegen von den klassischen Erwartungen ab. Während beim Doppelspalt das Hauptmaximum bei 90° relativ zur Spaltachse liegt, lag in diesem Experiment das ausgeprägteste Maximum unter 0°, d.h. entlang der Molekülachse. Die experimentellen Ergebnisse wurden daraufhin mit einigen Theorien verglichen. Die Theorie von Cherepkov und Semenov, welche die Einfachionisation des Wasserstoffmoleküls für zirkular polarisiertes Licht behandelt, berechnet die Elektronenwinkelverteilung durch die Hinzunahme der Streuung der Photo-elektronenwelle am benachbarten Proton. Die Berücksichtigung dieses Effektes führt zu einer deutlich besseren Beschreibung der Daten. Da es sich in diesem Experiment um die Doppelionisation des Moleküls handelt, auch für Fälle bei denen einem Elektron nahezu keine kinetische Energie zukommt, muss die Wechselwirkung zwischen allen Fragmenten, insbesondere zwischen den Elektronen berücksichtigt werden. Die 5C-Theorie [Wal00] berücksichtigt die Coulomb-Wechselwirkung zwischen allen Fragmenten des Wasserstoffmoleküls. Die Wechselwirkung zwischen den Ionen kann allerdings im Rahmen der Born-Oppenheimer-Näherung vernachlässigt werden. Der 5C-Rechnung zeigt, wie die experimentellen Daten, verstärkte Maxima entlang der Molekülachse, jedoch ist hier die Änderung des Größenverhältnisses zu extrem im Vergleich zu den experimentellen Daten. Um die experimentell gefundene Elektronenwinkel-verteilung zu rekonstruieren, dürfen dennoch anscheinend weder Streueffekte noch die Coulomb-Wechselwirkung der Fragmente vernachlässigt werden. Im weiteren Verlauf der Arbeit wurde die Energieaufteilung der Elektronen variiert. Die Interferenzstruktur wurde für verschiedene Energien des langsamen Elektrons untersucht. Je höher die Energie des langsamen Elektrons war, umso schwächer wurde das Maximum 0. Ordnung (senkrecht zur Molekülachse) der Interferenzen des schnellen Elektrons. Die unveränderte Größe des Maximums 1. Ordnung (entlang der Molekülachse) wurde auf die Überlagerung der Streueffekte sowie der Coulomb-Wechselwirkung mit der Interferenzstruktur zurückgeführt. Über die Energie der Protonen wurde im Experiment zudem der internukleare Abstand zum Zeitpunkt der Photoabsorbtion bestimmt. Es zeigt sich eine deutliche Abhängigkeit des Interferenzmusters vom internuklearen Abstand. Die experimentell gefundene Abhängigkeit entspricht dabei der des klassischen Doppelspalts. Schließlich wurde die Elektronwinkelverteilung für eine feste Emissionsrichtung des langsamen Elektrons untersucht. In den experimentellen Daten konnte deutlich die Unterdrückung der Emissionswahrscheinlichkeit des schnellen Elektrons entlang der Emissionsrichtung des langsamen Elektrons beobachtet werden. Diese Elektronenwinkelverteilung konnte durch eine Faltung der reinen Interferenz – erzeugt durch die Integration über den Zwischenwinkel der Elektronen - mit der reinen Elektronenwechselwirkung - erzeugt durch die Integration über die Stellung der Molekülachse - rekonstruiert werden. Die Verteilung nach der Integration über die Molekülachse ähnelte dabei der Struktur der Elektronenwinkelverteilung nach der Doppelionisation des Heliumatoms. Daraus lässt sich schlussfolgern, dass die gemessene Winkelverteilung der Photoelektronen des doppelionisierten Wasserstoffmoleküls aus einer Überlagerung der Coulomb-Wechselwirkung der Elektronen des heliumähnlichen Systems mit der Interferenzstruktur besteht. Das bedeutet, die Elektron-Elektron-Korrelation und die Doppelspaltinterferenz sind zwei separate Prozesse. Die Elektronen verlassen den Molekülverband wie im Heliumatom über den SO- bzw. den TS1-Prozess und das langsame Elektron führt nicht zur Dekohärenz. Y1 - 2005 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/2569 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-28320 ER -