TY - THES A1 - Wiedemann, Beate T1 - Optimierte Pentose-Fermentation in rekombinanten Saccharomyces cerevisiae-Stämmen N2 - Pflanzliche Biomasse bietet sich hervorragend als billiges und in großen Mengen verfügbares Ausgangssubstrat für biotechnologische Fermentationsprozesse an. Für die Herstellung von Bioethanol ist die Hefe Saccharomyces cerevisiae der wichtigste Produktionsorganismus. Allerdings kann S. cerevisiae die in Biomasse in großer Menge enthaltenen Pentosen Xylose und Arabinose nicht verwerten. Für einen ökonomisch effizienten Fermentationsprozess ist es daher essentiell, das Substratspektrum der Hefe entsprechend zu erweitern. Im Rahmen dieser Arbeit ist es gelungen, den bereits in Hefe etablierten bakteriellen Arabinose-Stoffwechselweg signifikant zu verbessern. Genetische und physiologische Analysen ergaben, dass eines der heterolog produzierten Enzyme, die L-Arabinose-Isomerase aus Bacillus subtilis, einen limitierenden Schritt innerhalb des Stoffwechselweges darstellte. In einem genetischen Screening konnte ein aktiveres Isoenzym aus Bacillus licheniformis gefunden werden. Zusätzlich wurde der Codon-Gebrauch aller heterologen bakteriellen Gene dem Codon-Gebrauch der hoch-exprimierten glykolytischen Gene von S. cerevisiae angepasst. Mit diesem rationalen Ansatz konnte die Ethanolproduktivität aus Arabinose um mehr als 250% erhöht werden, der Ethanolertrag wurde um über 60% gesteigert. Dies stellte die erste erfolgreiche Verbesserung eines heterologen Stoffwechselwegs in S. cerevisiae über Codon-optimierte Gene dar. In einem breit angelegten Screening wurde zum ersten Mal eine prokaryontische Xylose-Isomerase gefunden, die in S. cerevisiae eine hohe Aktivität aufweist. Durch das Einbringen des xylA-Gens aus Clostridium phytofermentans in verschiedene Hefe-Stämme wurden diese in die Lage versetzt, Xylose als alleinige Kohlenstoffquelle zu nutzen. Zusätzlich konnte damit die Vergärung von Arabinose und Xylose in einem einzigen S. cerevisiae-Stamm kombiniert werden. Vorherige Versuche, einen Pentose-vergärenden Stamm zu konstruieren, der einen bakteriellen Arabinose-Stoffwechselweg mit dem eukaryontischen Xylose-Reduktase/Xylitol-Dehydrogenase-Weg kombinierte, scheiterten an der unspezifischen Umsetzung der Arabinose durch die Xylose-Reduktase zu dem nicht weiter verstoffwechselbaren Arabitol. Für einen industriellen Einsatz der rekombinanten Hefen war es unerlässlich, die Eigenschaften für die Pentose-Umsetzung in Industrie-relevante Hefe-Stämme zu übertragen. Durch die Etablierung von genetischen Methoden und Werkzeugen ist es in dieser Arbeit gelungen, Industrie-Stämme zu konstruieren, die in der Lage sind, Arabinose oder Xylose zu metabolisieren. Dabei wurden die heterologen Gene stabil in die Chromosomen der Stämme integriert. Diese wurden mit Hilfe von „Evolutionary Engineering“ so optimiert, dass sie die Pentose-Zucker als alleinige Kohlenstoffquellen zum Wachstum nutzen konnten. Fermentationsanalysen zeigten eine effiziente Umsetzung der Pentosen zu Ethanol in diesen Stämmen. Damit ist ein neuer Startpunkt für die Konstruktion von industriellen Pentose-fermentierenden Hefe-Stämmen markiert, der zukünftig effizientere Bioethanol-Produktion ermöglichen wird. Y1 - 2009 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/7354 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-73075 N1 - Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden. ER -