TY - THES A1 - Ostermöller, Jennifer T1 - Verifizierung des Nukleosyntheseprogramms NETZ N2 - In dieser Arbeit wurde der langsame Neutroneneinfang (s-Prozess) mit dem Nukleosynthese-Programm NETZ simuliert. Ziel solcher Programme ist es, die solare Häufigkeitsverteilung zu reproduzieren. Der s-Prozess dient der Synthese von Elementen schwerer als Eisen und ereignet sich in astrophysikalischen Szenarien mit relativ geringen Neutronendichten. Dadurch sind die Neutroneneinfangzeiten meist größer als die Betazerfallszeiten und der Prozesspfad folgt dem Stabilitätstal in der Nuklidkarte. Aus diesem Grund sind die Reaktionsraten gut messbar und es steht ein umfangreiches Daten-Netzwerk zur Verfügung, welches in die Simulationen einfließen kann. Man unterschiedet zwischen der schwachen- und der Hauptkomponente des s-Prozesses. Die schwache Komponente findet in massereichen Sternen (M > 8M⊙) beim Helium-Kernbrennen und Kohlenstoff-Schalenbrennen statt. Bei Temperaturen über 2.5 × 108 K wird die Reaktion 22Ne(α ,n)25Mg aktiviert, welche Neutronen liefert, die von der Eisensaat eingefangen werden. Bei einer mittleren Neutronendichte von 106/cm3 reicht die Neutronenbestrahlung jedoch nicht aus, um den Synthesefluss über die abgeschlossene Neutronenschale bei N = 50 hinweg zu treiben. Folglich werden nur Isotope zwischen Eisen und Yttrium (56 < A < 90) aufgebaut. Schwerere Isotope (90 ≤ A ≤ 208) werden dagegen in der Hauptkomponente synthetisiert. Diese findet in thermisch pulsierenden AGB-Sternen statt, in denen während des Helium-Schalenbrennens Neutronen hauptsächlich über die Reaktion 13C(α ,n)16O zur Verfügung gestellt werden. Am Ende der jeweiligen Brennphasen gibt es einen Anstieg von Temperatur und Neutronendichte, welche jedoch nicht die globale Häufigkeitsverteilung, wohl aber Verzweigungspunkte beeinflussen können. An diesen Punkten liegen die Neutroneneinfang- und Betazerfallszeiten in der gleichen Größenordnung, sodass der s-Prozesspfad aufspaltet. Hinzu kommt, dass unter stellaren Bedingungen die Reaktionsraten starken Änderungen unterworfen sein können. Bei hohen Temperaturen und Dichten befinden sich die Kerne in angeregten Zuständen, die wie auch der Grundzustand Neutronen einfangen oder radioaktiv zerfallen können, jedoch bei veränderten Raten. Dieser Sachverhalt kann einen Einfluss auf die Häufigkeitsverteilung haben. Das umfangreiche Reaktionsnetzwerk des s-Prozesses kann schnell und mit guter Genauigkeit mit dem Programm NETZ berechnet werden. Dabei muss dem Programm ein Neutronenpuls - der zeitliche Verlauf von Neutronendichte und Temperatur - vorgegeben werden. Ziel dieser Arbeit war es, einen geeigneten solchen Puls zu finden, um die bisherigen Ergebnisse von NETZ zu optimieren. Außerdem wurde eine Aktualisierung der Reaktionsraten und solaren Häufigkeitsverteilung durchgeführt. Die neuen Neutronenpulse für die schwache- und Hauptkomponente liefern eine Verbesserung in der Übereinstimmung von berechneter und solarer Häufigkeit. Dabei konnte für die Hauptkomponente sowohl ein Profil mit einem rechteckigen als auch mit einem exponentiellen Verlauf der Neutronendichte gefunden werden. Darüber hinaus bietet NETZ die Möglichkeit, den Einfluss veränderter Reaktionsraten auf die Häufigkeitsverteilung abzuschätzen. Dazu steht inzwischen auch ein Online-Interface zur Verfügung. Dies ist besonders interessant, wenn es neue Messungen z.B. für Neutroneneinfangreaktionen gibt und man die Relevanz für den s-Prozess bestimmen möchte. So konnte in dieser Arbeit die Bedeutung der kürzlich neu gemessenen Raten für 63,65Cu(n,γ) und 69,71Ga(n,γ) beurteilt werden. Y1 - 2014 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/33742 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-337421 UR - http://exp-astro.physik.uni-frankfurt.de/docs/ostermoeller_14_master.pdf N1 - Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL. ER -