TY - JOUR A1 - Decourcelle, Mathilde A1 - Perez-Fons, Laura A1 - Baulande, Sylvain A1 - Steiger, Sabine A1 - Couvelard, Linhdavanh A1 - Hem, Sonia A1 - Zhu, Changfu A1 - Capell, Teresa A1 - Christou, Paul A1 - Fraser, Paul J. A1 - Sandmann, Gerhard T1 - Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism T2 - The journal of experimental botany N2 - The aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line. In-depth analysis of the data, including changes of metabolite pools and increased enzyme and transcript concentrations, gave a first insight into the metabolic variation precipitated by the higher up-stream metabolite demand by the extended biosynthesis capacities for terpenoids and fatty acids. An integrative model is put forward to explain the metabolic regulation for the increased provision of terpenoid and fatty acid precursors, particularly glyceraldehyde 3-phosphate and pyruvate or acetyl-CoA from imported fructose and glucose. The model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway. Although pyruvate and acetyl-CoA utilization was higher in the engineered line, pyruvate kinase activity was lower. A sufficient provision of both metabolites may be supported by a by-pass in a reaction sequence involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme. KW - GM maize KW - Genetically engineered carotenoid biosynthesis KW - metabolomics KW - pathway regulation KW - proteomics KW - transcriptomics Y1 - 2015 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/37225 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-372250 SN - 1460-2431 N1 - © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. VL - 66 IS - 11 SP - 3141 EP - 3150 PB - Univ. Press CY - Oxford ER -