TY - JOUR A1 - Vormberg, Alexandra A1 - Effenberger, Felix A1 - Muellerleile, Julia A1 - Cuntz, Hermann T1 - Universal features of dendrites through centripetal branch ordering T2 - PLoS Computational Biology N2 - Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites. Y1 - 2017 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44323 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-443232 SN - 1553-7358 SN - 1553-734X N1 - Copyright: © 2017 Vormberg et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. VL - 13 IS - (7): e1005615 SP - 1 EP - 25 PB - Public Library of Science CY - San Francisco, Calif. ER -