TY - THES A1 - Goldau, Thomas T1 - Lichtinduzierbare AntimiR-Sonden zur Regulation von miRNA in Neuronen & Reversible lichtgesteuerte Regulation von Nukleinsäuren mit Azobenzol C-Nukleosiden & Chemo-enzymatische Synthese lichtaktivierbarer Nukleinsäuren N2 - Nukleinsäuren besitzen neben der Speicherung und Übertragung der genetischen Information weitere vielfältige Funktionen in einem komplexen und dynamischen Netzwerk von gleichzeitig ablaufenden Prozessen in der Zelle. Die gezielte Kontrolle bestimmter Nukleinsäuren kann helfen, die jeweiligen Prozesse zu studieren oder auch zu manipulieren. Photoaktive Verbindungen, wie photolabile Schutzgruppen oder Photoschalter, sind ideal dazu geeignet die Struktur und Funktion von Nukleinsäuren zu studieren. Photolabile Schutzgruppen werden dazu meistens auf die Nukleobase installiert und stören die Watson-Crick Basenpaarung. Dies verhindert die Ausbildung einer Sekundärstruktur oder die Möglichkeit einen stabilen Doppelstrang zu bilden. Licht ist ein nicht-invasives Trigger-signal und kann mit hoher Orts- und Zeitauflösung angewendet werden, um selektiv die temporär geschützten Nukleinsäuren in der Zelle zu aktivieren. Das erste Projekt dieser Arbeit ist eine Kooperation mit der Arbeitsgruppe von Prof. Erin Schuman (MPI für Hirnforschung) und beschäftigt sich mit der lichtgesteuerten Regulation der miR-181a Aktivität in hippocampalen Neuronen von Ratten. Die Langzeitpotenzierung (LTP) ist der primäre Mechanismus von synaptischer Plastizität und somit essentiell für Lernen und Gedächtnis. Die langfristige Aufrechterhaltung von LTP erfordert eine gesteigerte (lokale) Proteinbiosynthese, ein Prozess, der noch nicht vollständig aufgeklärt ist. Die miR-181a reguliert die Genexpression von zwei für synaptische Plastizität wichtigen Proteinen, GluA2 und CaMKIIα. Mit einem lichtaktivierbaren AntimiR sollte der Einfluss der miR-181a auf die lokale Proteinsynthese von CaMKIIα und GluA2 untersucht werden. Photolabile Schutzgruppen sollen eine ortsaufgelöste Aktivierung des AntimiRs in den Dendriten ermöglichen. Ein Tracking-Fluorophor sollte die Lokalisierung des AntimiRs und eine gezielte Lichtaktivierung ermöglichen. Die Bindung der miRNA sollte fluoreszent visualisiert werden können, um eine Korrelation zwischen der inhibierten Menge an miR-181a und den neu synthetisierten CaMKIIα-Molekülen zu untersuchen. In diesem Projekt wurden drei Konzepte zur Synthese von lichtregulierbaren AntimiR-Sonden verglichen: Das erste Konzept verwendete eine Thiazolorange-basierte Hybridisierungssonde nach Seitz et al. Allerdings war mit diesem Konzept der Fluoreszenzanstieg zur Visualisierung der Hybridisierung zu gering. Im zweiten Konzept wurde ein dual-Fluorophor markierter Molecular Beacon entwickelt, bei dem die photolabilen Schutzgruppen in der Schleifen-Region die Hybridisierung der miR-181a vor Belichtung verhinderten. Nach Optimierung der Stammlänge, Anzahl und Position der photolabilen Schutzgruppen, sowie Auswahl des idealen Fluorophor-Quencher Paars, konnte nach UV-Bestrahlung in Anwesenheit der miR-181a ein signifikanter Anstieg des Hybridisierungsreporter-Fluorophors gemessen werden. Das dritte Konzept untersuchte lichtaktivierbare Hairpin-Sonden, bei denen ein Gegenstrang (Blockierstrang) über einen photospaltbaren Linker mit dem AntimiR verknüpft wurde. Dabei musste die optimale Länge des Blockierstrangs und die Anzahl der photo-spaltbaren Linker im Blockierstrang ermittelt werden, sodass die miR-181a erst nach Photoaktivierung das AntimiR binden und den Quencher-markierten Strang verdrängen konnte. Die in vitro Experimente vom Arbeitskreis Schuman waren zu dem Zeitpunkt des Einreichens dieser Arbeit noch nicht abgeschlossen. Erste Ergebnisse zeigten, dass der mRNA und Protein-Level von CaMKIIα eines gesamten hippocampalen Neurons durch ein nicht-lichtaktivierbare AntimiR um den Faktor ~1,5 gesteigert werden konnte. Zudem konnte durch die lokale Bestrahlung einer lichtaktivierbaren Hairpin-Sonde die lokale Gen-expression von CaMKIIα in einem Dendriten deutlich gesteigert werden. Das zweite Projekt dieser Arbeit beschäftigte sich mit der reversiblen Lichtregulation von DNA und RNA durch Azobenzol Photoschalter. Azobenzole eignen sich ideal für die Regulation der Duplexstabilität, denn das planare trans-Azobenzol kann zwischen die Basen interkalieren und somit einen Doppelstrang stabilisieren. UV-Licht überführt das trans-Isomer in das cis-Isomer. Dies ist gewinkelt, benötigt mehr Platz und stört dadurch die Stabilität eines Nukleinsäuredoppelstrangs. Entscheidend für die Effizienz der Regulation der Duplexstabilität ist der Linker, der das Azobenzol mit der Nukleinsäure verknüpft. Während vorangegange Studien von Asanuma et al. unnatürliche Linker (D-Threoninol, tAzo) verwendeten, wurde in dieser Studie das Azobenzol mit der C1‘-Position von (Desoxy-)Ribose C-Nukleoside verknüpft, um Azobenzol (pAzo und mAzo) zu erhalten. Der Riboselinker sollte die helikale Natur der Nukleinsäure optimal nachahmen und möglichst wenig Störung des Ribose-Phosphat-Rückgrats bewirken. Thermische Stabilitätsstudien zeigten, dass UV-Licht induzierte trans-zu-cis Isomerisierung den Schmelzpunkt eines RNA- und DNA-Duplexes um 5,9 und 4,6 °C erniedrigte. Dabei führte der Austausch eines Nukleotids gegen pAzo oder mAzo zu einer effektiveren Regulation der Duplexstabilität als der zusätzliche Einbau eines Azobenzol C-Nukleosids in die Sequenz. Ein Vergleich mit dem in der Literatur etablierten System, tAzo, zeigte, dass pAzo und mAzo teilweise einen stärkeren Duplexdestabilisierungseffekt nach UV-Bestrahlung bewirkten. ... Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/47034 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-470345 CY - Frankfurt am Main ER -