TY - THES A1 - Wagenbach, Björn Fröhlich T1 - Real-time lattice simulations of classical Yang-Mills theory and fermion effects N2 - Das Standardmodell der Elementarteilchenphysik beschreibt nach aktuellem Kenntnisstand die Entstehung, den Aufbau und das Verhalten der Materie in unserem Universum am erfolgreichsten. Dennoch gibt es einige Phänomene, die sich nicht in dessen Rahmen beschreiben lassen, wie z. B. die Existenz von dunkler Materie und Energie, nicht-verschwindende Neutrinomassen oder die Baryonenasymmetrie. Speziell im Hinblick auf die starke Wechselwirkung, welche im Standardmodell durch die Quantenchromodynamik (QCD) beschrieben wird, gibt es noch immer viele offene Fragen. Eine Umgebung, in der man die QCD experimentell ergründen kann, bieten vor allem Schwerionenkollisionen, die insbesondere am Large Hadron Collider (LHC) oder am Relativistic Heavy Ion Collider (RHIC) durchgeführt werden. In dieser Arbeit soll ein Beitrag von theoretischer Seite aus hinsichtlich eines besseren Verständnisses dieser Schwerionenkollisionen und der zugrundeliegenden QCD erbracht werden. Der Fokus liegt dabei auf dem Isotropisierungsprozess unmittelbar nach der Kollision der beiden Kerne. Neben etlichen effektiven Theorien, die sehr gute Ergebnisse in den entsprechenden Grenzbereichen liefern, ist die Beschreibung der QCD im Rahmen der Gittereichtheorie (Gitter-QCD) die am meisten etablierte. Diese beinhaltet in den meisten Fällen einen Übergang zur euklidischen Raumzeit, da somit ein Auswerten der hochdimensionalen Pfadintegrale mithilfe von Monte-Carlo-Simulation basierend auf dem sogenannten Importance Sampling ermöglicht wird. Aufgrund der Komplexwertigkeit der euklidischen Zeitkomponente ist man jedoch an das Studieren von statischen Observablen gebunden. Da wir aber gerade an einer Zeitentwicklung des Systems interessiert sind, sehen wir von dem Übergang zur euklidischen Raumzeit ab, was den Namen “real-time” im Titel der Arbeit erklärt. Wir folgen dem sogenannten Hamilton-Ansatz und leiten damit Feldgleichungen in Form von partiellen Differentialgleichungen her, die wir dann mit den Methoden der Gitter-QCD numerisch lösen. Dabei bedienen wir uns der effektive Theorie des Farb-Glas-Kondensats (CGC, aus dem Englischen: “Color Glass Condensate”), um geeignete Anfangsbedingungen zu erhalten. Genauer gesagt basieren unsere Gitter-Anfangsbedingungen auf dem McLerran-Venugopalan-Modell (MV-Modell), das eine klassische Approximation in niedrigster Ordnung darstellt und nur Beiträge rein gluonischer Felder berücksichtigt. Die klassische Näherung sowie das Vernachlässigen der fermionischen Felder wird insbesondere mit den hohen Besetzungszahlen der Feldmoden begründet. Einerseits dominieren Infrarot-Effekte, welche klassischer Natur sind, und andererseits ist dadurch der Einfluss der Fermionen, die dem Pauli-Prinzip gehorchen, unterdrückt. Gerade bei letzterer Aussage fehlt es jedoch an numerischen Belegen. Wir erweitern daher die klassische MV-Beschreibung durch stochastische Gitter-Fermionen, um diesem Punkt nachzugehen. Da sich Fermionen nicht klassisch beschreiben lassen, spricht man hierbei oft von einem semi-klassischen Ansatz. Eines der Hauptziele dieser Arbeit liegt darin, den Isotropisierungsprozess, der bislang noch viele Fragen aufwirft, aber unter anderem Voraussetzung für das Anwenden von hydrodynamischen Modellen ist, zu studieren. Wir legen dabei einen besonderen Fokus auf die systematische Untersuchung der verschiedenen Parameter, die durch die CGC-Anfangsbedingungen in unsere Beschreibung einfließen, und deren Auswirkungen auf etwa die Gesamtenergiedichte des Systems oder die zugehörigen Isotropisierungszeiten. Währenddessen überprüfen wir zudem den Einfluss von unphysikalischen Gitter-Artefakten und präsentieren eine eichinvariante Methode zur Analyse der Güte unserer klassischen Näherung. Die Zeitentwicklung des Systems betrachten wir dabei sowohl in einer statischen Box als auch in einem expandierenden Medium, wobei Letzteres durch sogenannte comoving Koordinaten beschrieben wird. Zudem liefern wir einen Vergleich von der realistischen SU(3)-Eichgruppe und der rechentechnisch ökonomischeren SU(2)-Eichgruppe. Mit unseren numerischen Ergebnissen zeigen wir, dass das System hochempfindlich auf die verschiedenen Modellparameter reagiert, was das Treffen quantitativer Aussagen in dieser Formulierung deutlich erschwert, insbesondere da einige dieser Parameter rein technischer Natur sind und somit keine zugehörigen physikalisch motivierten Größen, die den Definitionsbereich einschränken könnten, vorhanden sind. Es ist jedoch möglich, die Anzahl der freien Parameter zu reduzieren, indem man ihren Einfluss auf die Gesamtenergie des Systems analysiert und sich diesen zunutze macht. Dadurch gelingt es uns mithilfe von Konturdiagrammen einige Abhängigkeiten zu definieren und somit die Unbestimmtheit des Systems einzuschränken. Des Weiteren finden wir dynamisch generierte Filamentierungen in der Ortsdarstellung der Energiedichte, die ein starkes Indiz für die Präsenz von sogenannten chromo-Weibel-Instabilitäten sind. Unsere Studie des fermionischen Einflusses auf den Isotropisierungsprozess des CGC-Systems weist auf, dass dieser bei kleiner Kopplung vernachlässigbar ist. Bei hinreichend großen Werten für die Kopplungskonstante sehen wir allerdings einen starken Effekt hinsichtlich der Isotropisierungszeiten, was ein bemerkenswertes Resultat ist. Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/47934 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-479342 CY - Frankfurt am Main ER -