TY - JOUR A1 - Zschiebsch, Katja A1 - Fischer, Caroline A1 - Wilken-Schmitz, Annett A1 - Geisslinger, Gerd A1 - Channon, Keith A1 - Watschinger, Katrin A1 - Tegeder, Irmgard T1 - Mast cell tetrahydrobiopterin contributes to itch in mice T2 - Journal of cellular and molecular medicine N2 - GTP cyclohydrolase (GCH1) governs de novo synthesis of the enzyme cofactor, tetrahydrobiopterin (BH4), which is essential for biogenic amine production, bioactive lipid metabolism and redox coupling of nitric oxide synthases. Overproduction of BH4 via upregulation of GCH1 in sensory neurons is associated with nociceptive hypersensitivity in rodents, and neuron‐specific GCH1 deletion normalizes nociception. The translational relevance is revealed by protective polymorphisms of GCH1 in humans, which are associated with a reduced chronic pain. Because myeloid cells constitute a major non‐neuronal source of BH4 that may contribute to BH4‐dependent phenotypes, we studied here the contribution of myeloid‐derived BH4 to pain and itch in lysozyme M Cre‐mediated GCH1 knockout (LysM‐GCH1−/−) and overexpressing mice (LysM‐GCH1‐HA). Unexpectedly, knockout or overexpression in myeloid cells had no effect on nociceptive behaviour, but LysM‐driven GCH1 knockout reduced, and its overexpression increased the scratching response in Compound 48/80 and hydroxychloroquine‐evoked itch models, which involve histamine and non‐histamine dependent signalling pathways. Mechanistically, GCH1 overexpression increased BH4, nitric oxide and hydrogen peroxide, and these changes were associated with increased release of histamine and serotonin and degranulation of mast cells. LysM‐driven GCH1 knockout had opposite effects, and pharmacologic inhibition of GCH1 provided even stronger itch suppression. Inversely, intradermal BH4 provoked scratching behaviour in vivo and BH4 evoked an influx of calcium in sensory neurons. Together, these loss‐ and gain‐of‐function experiments suggest that itch in mice is contributed by BH4 release plus BH4‐driven mediator release from myeloid immune cells, which leads to activation of itch‐responsive sensory neurons. KW - inflammation KW - nitric oxide KW - pain KW - pruritus KW - redox signalling KW - sensory neurons KW - tetrahydrobiopterin Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/48431 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-484319 SN - 1582-4934 SN - 1582-1838 N1 - This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. VL - 22 SP - 1 EP - 16 PB - Wiley-Blackwell CY - Hoboken, NJ ER -